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SUMMARY

This report covers the work accomplished during Phase I of contract NAS3-7609,

which was initiated on 25 June 1965 and continued to 25 July 1967. Briefly, the

objective of Phase I was to analyze, design, procure, and test four types of

mainshaft seals for advanced gas-turbine applications.

The work accomplished during Phase I is outlined below:

1 Four seal configurations including a rubbing-contact seal with a piston

ring secondary seal, a rubbing-contact seal with bellows secondary

seal, an orifice-compensated hydrostatic seal, and an orifice-compensated

externally pressurized seal were analyzed, designed, procured, and
tested.

2. A hybrid (combined hydrostatic and hydrodynamic) seal configuration

was tested under a subsequent contract amendment.

3. _ deformation t_ analyses of the orifice-compensated

hydrostatic seal and the hybrid seal were made and correlation to

experimental results was obtained.

The experimental results and analysis of the two general types of seals under

study, (the rubbing-contact type and the gas-film-riding seals) are high-lighted
below:

, Under the wide range of pressure differentials and the high sliding

velocity at high temperature conditions, the standard rubbing contact

face seal exhibits a thermal instability which resulted in excessive

wear and excessive leakage.

, The inclusion of shrouded Rayleigh hydrodynamic pads on the face

of the rubbing-contact face seals did reduce leakage and wear under

the room-temperature test environment.

, The shallow recessed orifice-compensated hydrostatic gas film
riding seal will perform satisfactorily up to 550°lFiJl_ at 200 ft/sec

and a pressure differential of 100 psig when used in conjunction with

a noncooled spring-loaded floating seal plate. The gas film has a

con,verging film at 100_'and an almost perfectly parallel film at
365_ and an increasingly divergent film at higher temperatures.

At these higher temperatures the thermal distortion of the seal plate

.oo
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1

.

and shaft created a _ivergent film which resulted in rubbing

contact and wear at the inner lip of the carbon seal's nosepiece, The

degree of tilting resulting from the thermal distortion was predicted

through equilibrium gas film analysis.

The cooling scheme used in the oil-cooled seal-plate design was in-

adequate with the hybrid seal. The film-stiffness characteristics of

the hybrid seal imposed severe operating limitations on this seal

design. In fact, the hybrid seal failed at larger nominal film thick-

nesses and leakage levels than the hydrostatic seal because of its

inferior tolerance to divergent film operation.

The externally pressurized orifice-compensated seal exhibited no

improvement in performance compared with the plain orifice-compensated
seal.
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FINAL REPORT - PHASE I

DEVELOPMENT OF MAINSHAFT SEALS

FOR ADVANCED AIR BREATHING

PROPULSION SYSTEMS

Dr.

by

R. M. Slayton, A. J. Parks

C. C. W. Ng and A. H. McKibbin

ABSTRACT

Four mainshaft seals for advanced gas-turbine applications

were designed, tested and analyzed. The seals studied were

a rubbing-contact face seal with piston-ring secondary seal,

a rubbing-contact face seal with bellows secondary seal, an

orifice-compensated hydrostatic seal, and an orifice-com-

pensated externally pressurized seal. In addition, a hybrid

seal was tested and analyzed. Results of the testing and

analysis indicated that the gas-film seals appeared to have

the potential to accommodate these environments while

rubbing-contact seals lacked the development potential to

operate at elevated temperature levels, high relative

speeds, and a wide range of pressure differentials.
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I. INTRODUCTION

Development of seals to accommodate the increasingly severe environments of

temperature, relative velocity and range of pressure differential required by

the advanced air-breathing gas turbines, and to meet the performance improve-

ments of decreased leakage and weight will require extensive effort. The

labyrinth seals used on some present engines become unacceptably heavy, bulky,

and have excessive leakage at the high pressure differentials and with large

leakage areas imposed by large shaft diameters. Development testing of ad-

vanced gas-turbine engines in recent years has demonstrated the limited develop-

ment potential of rubbing-contact seals. Subsequent analysis of the spiral-

groove configuration revealed that the expected improvement in film-stiffness

characteristics had not been realized. Testing of rubbing contact seals under

this contract has confirmed these limitations.

A seal concept which has received increasing attention for severe seal environ-

ments is the gas-film seal. Because of the inherent reduced heat generation of

this seal concept, it has the development potential to meet the increasingly

severe environments of the advanced air-breathing gas turbine. Several types

of gas-film seals were designed and tested during Phase I of the contract. Two

types of orifice-compensated hydrostatic seals were tested. One was pressur-

ized by the high pressure of the compartment to be sealed, and the other type

was externally pressurized, using a higher pressure source. In addition, a

hybrid configuration was evaluated. The hybrid configuration utilized the

orifice-compensated hydrostatic configuration and incorporated a spiral groove

on the seal plate to increase gas film stiffness. This increased film stiffness

decreased the seal's sensitivity to thermal distortion. These seals were de-

signed to operate with a nominal gas-film thickness of approximately 0. 0004

inches separating the rotating from the nonrotating seal members.

PAGE NO. 1



PRATT & WHITNEY AIRCRAFT PWA-3161

II. CONCLUSIONS

Considerable experience and information relative to the problems of turbine

engine face seals operating at elevated temperature and pressure conditions
was obtained from this test series. The conclusions reached as a result of

this Phase I work are as follows:

1 The advancement of the state of the art for mainshaft seal applica-

tions in air-breathing propulsion systems requires continued research

and development to satisfy performance criteria.

. Rubbing-contact seals have exhibited limitations and would require

undue development effort to improve seal thermal stability and find

adequate materials and/or cooling schemes to operate at the re-

quired combination of environments specified in the contract.

3. Gas-film seals have exhibited the potential to be developed for ad-

vanced gas-turbine mainshaft seals.

. The materials combination tested under Phase I of the contract for

gas-film seals would not tolerate rubbing contact between seal and

seal plate at the contract environments.

5. The most critical factor affecting gas-film seal operation is the thermal

distortion of the seal plate over the range of operating conditions.

. A successful gas-film seal requires a detailed accounting of all thermal

and mechanical distortions with corresponding design features to main-

tain parallellism of sealing members at the seal interface.

7. Inclusion of hydrodynamic pads on the rubbing contact seal showed

promise of extending the range of successful operation.

8. A hydrostatic seal design has greater inherent tolerance to divergent

film conditions than other gas-film seal designs tested.

. The orifice-compensated externally pressurized seal offered no

improvement in comparison with the plain orifice-compensated

hydrostatic seal.

10. The hybrid seal has superior film stiffness while operating with a

convergent or parallel film. However, the hybrid seal is inferior

to the hydrostatic seal for divergent film operation because of the

influence of the hydrodynamic effect.
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III. RECOMMENDATIONS

Based on the experience obtained during the Phase I tests, the contractor

recommends the following:

. A research and development program of sufficient scope to develop

an operative gas-film seal to fulfill the requirements of contemplated

advanced air-breathing propulsion systems should be pursued.

1 Major development effort should be directed into minimizing thermally

induced distortions in seal plates and maximizing the conformance

capability of the seal and seal plate.

. A materials-compatibilities cvaLuaL1un'..... ueveLupment-1.... 1....... program should

be considered to develop a gas-film seal which will withstand momentary

high-speed rubbing over the full range of operating conditions.

t No further development effort should be expended on rubbing-contact

seals to meet operating conditions as severe as those specified in this
contract.
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IV. TASK I
MAINSHAFT SEAL DESIGN

A. INTRODUCTION

The objective of this task was to analyze and design four mainshaft seals capable

of operating at the following conditions:

• Seal sliding speed: 0 to 500 ft/sec

• Seal pressure differential: 0 to 300 psi

• Gas temperature: ambient to 1300°F

• Oil-sump temperature: ambient to 500°F

The four seals designed were a rubbing-contact face seal with piston-ring secondary

seal, a rubbing-contact hydrodynamic pad face seal with bellows secondary seal,

an orifice-compensated hydrostatic seal, and an orifice-compensated externally

pressurized seal. In additon, the contractor analyzed and tested a hybrid seal

which consisted of the basic orifice-compensated hydrostatic seal running against

a spiral-groove seal plate supplied by NASA. All five seals were designed for

flight applications.

The seal design concepts were related to _e particular operating conditions and

the problems generated by those conditions. The central design problem was

the fact that the seal assemblies must be kept within very close dimensional

tolerances in order to operate successfully, yet the thermal distortions, pressure

distortions, and wear caused by the operating conditions all tend to degrade the

designed tolerances. High sliding speeds affect the design in many ways, the

most important of which is heat generation by friction. Heat generation can be

countered by increasing the coolant flow and by reducing the face loading on the

seal. The latter approach was tried in the three film-riding seals, where the

face load is supported by a thin gas film. Cooling oil was used in some seal

plates to keep thermal gradients to a minimum.
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B. RUBBING-CONTACT FACE SEALS

The contract dealt with two rubbing-contact face seals: a conventionally designed

face seal with a piston-ring secondary seal, and a face seal with hydrodynamic pads

and a bellows secondary seal. The latter seal was designed and built by the Stein

Seal Company. The thermal analysis of the face seal with piston-ring secondary

seal is included in this report.

1. RUBBING-CONTACT FACE SEAL WITH PISTON RING SECONDARY SEAL

The design of the rubbing-contact seal required that close attention be given to

many details such as closing forces, deflections, and operating temperatures. A

sketch of a seal assembly which meets these requirements is shown in Figure 1.

The seal is shown installed in the test rig in which it was run. Also shown in

the figure are the bore diameter and the carbon dimensions which were used to

calculate the seal's pressure balance.

The seal assembly contains the seal subassembly and the seal holder. The seal

subassembly consists of a CDJ-83 seal ring shrunk in the seal housing.

Secondary sealing is accomplished by two piston rings housed in the seal holder.

The piston rings seal against the innersurface of the seal.housing, which is

flame-plated with Linde ]_i_-_ coating ','h_('w ^ 7=r_:_ - Twenty-four springs

are used to keep the carbon seal in contact with the seal plate, which is mounted

on a simulated turbine shaft. The seal plate is flame-plated with Linde LC1C

coating on the rubbing face and is oil cooled.

a. Force Calculations

The spring force F s must be designed to overcome the frictional forces Ff and
the inertial forces F a. The friction force in a typical seal design is the
result of the piston-ring secondary seals and the torque pins rubbing on the

housing. If an undamped bellows design were employed, this force would not

exist. The diametral tension for a standard piston ring should be approximately

2 to 3 pounds for 4 - to 8-inch diameter rings, and the ring should be pressure-

balanced to keep the normal forces low. Ia addition, the choice of piston ring

and housing materials and platings should be made with the coefficient of friction

in mind. Several satisfactory plating combinations from a wear point of view

are listed, with their coefficients of friction, in Table I.
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TABLE I

PLATING COMBINATIONS

Plating Combinations Coefficient of Friction

chrome on chrome

chrome on LCIC (chrome carbide)

chrome on LCIA (chrome carbide)

chrome on LA2 (aluminum oxide)

0.225

0.218

0.145

0.165

The frictional force on the piston ring is the sum of the diametral tension and

pressure forces times the coefficient of friction:

Ff: IN T d C 1 + (1-K)AP_]a

where T d = diametrialtension = 3.4

N = number of pistion rings = 2

C1 = constant to give the normal load
from the diametrial tension = 2.76

K = equivalent pressure-balancing coefficient = 0.652

hP = 300 psi

A = 7r(6.799) (0.05) = 1.067 in. 2

= coefficient of friction = 0. 145

Ff = 18.96 lb.

The inertial forces are more complicated and involve motion with several degrees

of freedom in following the runout of a seal plate. The analysis used was that of

angular motion of the seal and carrier following the axial runout of the seal plate

(0. 001 inch FIR). The simplified model shown in Figure 2 was used for this

analysis.

Summing moments of inertia about the carbon face for the four bodies shown in

Figure 2 (taken to be hollow circular cylinders) gives -

EI = I l+I2+m 2_ 12+I3+m 3 (_1+_2) 2+I4

m t _ [tlR 2_ 2 _ ] [(R3_ R22)12 12

i R42 R52 _i 2 m2 4 RI +g22 + + 2

12 - -- + "_ ) + _ 1"2 / _12 + --m3 " -- _3

(_1+_2)2 ] m4 (R52_R12 + _12_+ +-i-/ -
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Figure 2 Simplified Model of Seal and Carrier Subassembly
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where m 1 =

m 2 =

m 3 =

m4 =

PsTr_ 3 (R32-R22)/g Units of inches for Ri,._ i

Ps -- density of steel

Pc = density of carbon

Since ZM = Y.I.a and for simple harmonic motion of the seal plate, the angular
acceleration

2
rw

2R5 r = runout of the seal

_M
Finally, F :

a R 5

For a speed of 17,000 rpm, a runout of 0. 001 inch FIR, and the given geometry,

the inertial force is equal to 3.68 pounds. (Reference Semi Annual Report No. 1 -

PWA-2683).

The spring force is therefore represented by F s >/(Ff+Fa),

force by

whe r e:

the total net closing

F = Fs±(Ff+Fa) +(_ )c --K A_l_

K = Equivalent pressure balancing eoeffecient = 0.652

A H = Area bounded by the secondary cylinder diameter and high

pressure side of seal face

A T = Total area of seal face

Consequently this development yields a spring force of (18.96 + 3.68) = 22.64

pounds for the design. (Reference Semi Annual Report No. 1 - PWA-2683).

b. Deflection Analysis

For the rubbing-contact seal, the deflection analysis by means of computer

solution yielded the following results:

Deflections of the rubbing-contact seal carbon ring and carrier assembly have

been calculated with the aid of a digital computer. The methods used are des-
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cribed in Appendix A page 181 and the results of the analysis are summarized
below.

The angular deflection of the carbon seal face due to the interference fit between

the carbon ring and the steel carrier is 0. 011 radians (the positive sense denotes

a diverging leakage path). Following installation of the carbon ring into the

carrier, the seal face is lapped flat. The elevated temperature present during

seal operation reduces the interference fit and imparts an angular displacement

to the seal face in the negative or convergent direction. At the maximum operating

temperature the angular displacement of the seal face is -0. 0094 radians. The

angular displacement of the seal face due to a 300 psi pressure differential is

0. 004 radians. The rotation of the seal face at maximum operating conditions,

therefore, is -0. 0054 radians.

The net convergence or divergence of the leakage path through the seal interface

is the difference between the angular deflections of the carbon seal face and the

seal plate. Seal plate deflection due to pressure loading is numerically less

than -0.0001 radians. Thermal deflection of the seal plate, however, is

significant and is caused by thermal gradients in the shaft and seal plate.

A discussion of seal plate thermal analysis follows.

c. Temperature Maps

Preliminary analysis was based on the assumption that the heat generation at the

seal and seal plate interface was due to the friction of carbon-to-metal contact.

The analysis utilized the T@SS computer program from the SHARE General

Program Library. A coefficient of friction 0.3 was assumed. This value is

slightly lower than published friction coefficients of carbon brushes.

A thermal analysis was performed to determine the effects of keeping the exterior

surface of the seal plate and the seal carrier dry rather than cooling them by oil-

jet impingement. A nominal heat-transfer coefficient of 50 Btu/hr ft2°F was

assumed for the oil splashing on the surfaces. The bulk temperatures of the carbon

seal and seal carrier were markedly reduced, but the seal plate temperatures

were essentially unchanged. The derived temperature maps for the dry and oil

wettecl conditions are shown in Figures 3 and 4, respectively. The heat-

generation input for these two maps was based on theoretical film-shear

considerations. The analytical methods used are outlined in Appendix B.

d. Optimum Coolant Hole Location in Seal Plate

The thermal effects associated with the internal cooling of a seal plate were

analyzed. Temperatures were computed for three possible configurations: a

seal plate without internal coolant, a seal plate with coolant holes parallel to

PAGE No. 9



PRATT & WHITNEY AIRCRAFT PWA-3161

o. o

_o 00

o,,-_-
oo
oo

i,u

a0 a-

o

m

k_VO N('lOg _)IiVgVIQV

bib

°,,_

o

•"_ _
_eo

_';_ ._
@

J

oo
oo

w

ASVONNO@ 31zVgVIQV

o

,..., o

._
_ _.._

4_

_ _ .._

°,-I

PA_E NO. i0



PRATT & WHITNEY AIRCRAFT PWA-3161

and near the interface (source of heat), and a seal plate with coolant holes

diagonal to and far from the interface. The coolant holes have a nominal inside

diameter of 0. 060 inch and are located every 10 degrees circumferentially. The

radial temperature distribution of the rubbing surface (contact face), for each

of the three configurations is shown in Figure 5. The corresponding temperatures

located 0.079 inches below the rubbing surface are also shown in the figure.

It can be seen from the curves corresponding to the oil-cooled plate that moving
the coolant holes closer to the source of heat has little effect on either the tem-

perature level or on the local axial temperature gradient.

It is apparent that near the interface, the plate with no internal coolant has a

lower local thermal gradient axially, radially, and circumferentially, but it

has the highest temperature level. The local high-temperature region in each

curve is due to the presence of heat generation at the interface between the seal
and seal plate. The interface lies between 3.29 and 3.47 inches from the shaft's

axis of rotation.

To obtain a seal plate with more uniform interface temperatures circumferen-

tially and lower temperatures near the surface, a coolant annulus approximately

the width of the seal lip might be incorporated near the face of the plate. The

annulus would reduce the circumferential temperature variations which are

characteristic of discrete hole designs.

2. RUBBING-CONTACT HYDRODYNAMIC PAD FACE SEAL WITH BELLOWS
SECONDARY SEAL

a. Description

Figures 39 and 41 show sketches of the rubbing-contact hydrodynamic pad face

seal. This seal consists of a carbon primary seal and a bellows secondary
seal. The high-pressure air is at the inner edge of the seal.

Leakage air flows radially outward though grooves in the carbon face and the

full pressure drop across the seal occurs over a 0o 05-inch wide circumferen-

tial land or seal"dam". Hydrodynamic separation of the seal interface is

produced by 12 pads on the carbon face located adjacent to the inner radius

of the seal dam. The surface of each pad is tapered in the circumferential

direction so that the rotational velocity of the seal plate produces a local

increase in air pressure on the surface of each pad.
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b. Deflection Analysis

The deflection analysis of this seal was based on the equations of R. T. Roark

(Reference 1). For purposes of the analysis, the seal was assumed to be

composed of the section shown in Figure 7. The radial deflection of the carbon

( 5 carbon) was represented by Roark's equation for a thick-walled cylinder

subject to pressure loading, Equation 1.

= aP 1 2b 2 aP o [b2+a 25carbon --_ - v 1
E 1 a2_b 2 - E1 \a2_b 2 ]

where:

(i)

I)
0

P1 =
E 1 =

v 1 =

a =

b =

Pressure associated with the press fit between the carbon and
the carrier

300 psia

3 x 106 (Young's modulus of elasticity for carbon)

0.25 (Poisson's ratio for carbon)
3.75 inches

3.1 inches

Similarly, the radial deflection of the carrier is represented by Equation 2,

)_ o + "2 (2)
5carrier E 2 c2 _ a 2

where:

E 2 =

_2 =
C =

30 x 106 (Young's modulus of elasticity for steel)

0.3 ( Poisson's ratio for steel)
4.1 inc he s

To ensure continuity, the deflection of the carbon and carrier must be equal.

The increase in Po is 208.35 psi, and the radial deflections of the carbon and
carrier are 0. 00030 inch.

c. Force Calculations

The inertial loadings were calculated using the procedure described for the rubbing-

contact face seal with piston-ring secondary seal. The total weight of the bellows

(including the front end fitting) is 3. 2053 pounds, or 0. 1457 pounds per inch of

circumference. G-loadings were calculated for sliding speeds of 200, 400, and

500 ft/sec, and multiplied by the bellows' weight per inch of circumference to

obtain the inertial forces of the bellows on the seal face. To ensure good tracking,
the spring force was set equal to the maximum inertial force. This means that

the force supplied by the air-pressure differential is always in excess of the re-

quired amount. The results of these calculations are shown in Table II.
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TABLE II

FORCE BALANCE SUMMARY

Pressure gradient (psig)

Velocity (ft/sec) •

G-loading

Inertial force on seal face (lb/in)

Spring Force (lb/in)

Required Pressure Force (lb/in)

Pressure Seat Force Supplied (lb/in)

Excess Pressure Seat Force (lb/in)

100 100 200 300

200 332" 400 500

0.3646 1.0 1. 458 2.28

0. 0531 0. 146 0.2124 0.3321

0° 3321 0.3321 0° 3321 0.3321

-0.2790 -0. 1861 -0. 1197 0

O. 1150 O.1150 O.0600 0

O.3940 O.3011 O.1797 0

*Under condition of _p=100 psig, 200 ft/sec, G=0.3646, it is intended that G >_ 1

for design requirements, set G=I, thus inertia force is calculated to be equal to

0. 146 lb/in and additional column is tabulated as shown.

CL

SEAL PLATE

m

.BELLOWS
FORCE

Figure 7 Simplified Model of the Rubbing-Contact Hydrodynamic-Pad
Face Seal
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C. ORIFICE-COMPENSATED GAS-FILM FACE SEALS

Originally, the contract dealt with two gas-film seals: an orifice-compensated
hydrostatic seal and an orifice-compensated externally pressurized seal. A

hybrid seal consisting of a hydrostatic seal running against a spiral-groove

seal plate was added to the program in May 1967. These three seals are dis-

cussed jointly in the following sections. The original seal types were designed

and manufactured by the Stein Seal Co.

i. HYDROSTATIC AND HYBRID SEAL CONFIGURATIONS

Figure 8 is a sketch of the orifice-compensated hydrostatic face seal mounted

in the test rig. Figure 8 and the discussion below also apply to the hybrid seal,

since the only difference between the two seals is that the seal plate of the hy-

brid seal has spiral grooves etched in it by NASA-Lewis.

The sealed high-pressure air is ducted through three holes to an annular

groove (1) in the carbon face. Each of the holes contains an assembly of four

orifices in series (2). The leakage flow through the orifice produces a pressure

drop from the sealed pressure to the recess (annular groove in the carbon}

pressure (Pr), and the sealing gap height is controlled by compensations in this

recess pressure. If the sealing gap height is closed down for some reason the

following occurs: (a) the seal leakage out is reduced, (lo) the pressure drop

across the orifices is reduced because of reduced leakage flow, thus the recess

pressure increases and (c) the increased recess pressure acts as a restoring

force to maintain design gap height. If the seal gap opens beyond the design

point the inverse process takes place, therefore the design gap is maintained

by compensations in the recess pressure.

2. EXTERNALLY PRESSURIZED SEAL CONFIGURATION

Figure 9 is a schematic drawing of the externally pressurized face

seal. This seal is a film-riding seal which allows high-pressure gas to be

introduced to the annuiar groove in the carbon from an externa[ source. The

addition of the external source is the principal difference between this seal and

the other two film-riding seals. Like the other two seals, the gas is introduced

to the annular groove through three holes, each of which contains four orifices

in series. This gas and the leakage air creates the gas film for the seal to

ride on.

3. FORCE BALANCE AND LEAKAGE CALCULATIONS

The procedure described in this section is for the externally pressurized seal.

Calculations for the hydrostatic seal were similar, but somewhat simpler.

The analysis requires that all axial forces on the seal carbon nosepiece are

balanced. The analytical model on which the calculations are based is shown
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Figure 9 Schematic of the Externally Pressurized Face Seal
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Figure 10 Analytical Model for Force Balance and Leakage Calculations
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in Figure 10. The energizing section consists of three equally spaced orifice

assemblies (one of which is shown in Figure 10). Each orifice assembly con-

tains four orifice plates, each with a well-rounded 0. 0225-inch or 0. 0290-inch

diameter orifice, depending upon whether the orifice-compensated externally

pressurized or hydrostatic seal is used. The annular areas (A o, A G, etc. )
are listed below:

A o = r(3.6242- 3. 4442 )=3.9947in2

A G = 2. 0052 in 2,

Ai = 2.0724 in 2,

AA = 1.2635 in 2,

AB 1. 2390 in _,

A 1 =0.6114in2

A 2 =7.4980in2
A3 -- 2.4655 in 2

A 4 =5.6100in2

To make the calculations, the following values were assumed as the conditions

of operation:

Pressurizing gas Pi = 335 psia T i = 200°F

Sump gas Ps = 15 psia T s = 500°F

Ambient air PA = 315 psia TA = 1300 °F

Viscosity u = 240 micropoise

For continuity of the flow

Qtotal = Qorifice + Qinner dam = Qouter dam

where:
Qorifice CD Pi AOi C1 C2 K= r

CD = Orifice discharging coefficient = 0.85
AOi = Area of three orifices

C1 = Conversion factor to scfm = (Pi/Pst) (Tst/Ti)

C2 = 60g_v_R'_) = (60 x 386)/(7.64 x 10 -2 x vr245, 000 x 760#) = 87.6

and

Kr = f (Pi/PG) = f(r)
1

I 12k-1 k

f(r) 1/ l_r k for r

1 k

= 2_+_ (__..1) k-1 for r <(k-_-+1) k-1

where

k=

r =

Cp/C v = 1.4 for air

Pi/P G
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then

*Qinner dam = 2 r Rmi

*Qouter dam = 2 _r R ho 3
mo

where

Rm

24_ L o

(Pi 2 - PG 2) Tst

Pst T

(pG 2 - pS 2)

Pst T

= the mean radius of the inner or outer dams

L i and L o = the differences between the inner and outer radii of the areas

A i and Ao, respectively.

Tst and Pst = temperature and pressure at standard conditions.

h o = film thickness.

With the substitution of Qorifice' Qinner dam' and Qouter dam
equation, we have

into the continuity

5. 604K r+4.0336x 10 +6h o 3 (pi 2_PG 2)=2.4x 10 +6h o 3 (pG 2 _pS 2)

Since Kr is a function of PG' PG can be determined from this equation with a

given value of h .
o

It is to be noted that K r is a function of PG' with given value of h o, PG can be
determined through homograph or computer iteration from the above equation.

The total force generated in the seal face is the summation of all the pressure

force from the areas AO, A G, A i, A A and A B. Since Pi has the same order as
PA, the total force can be approximated by summing the pressure forces from

A O, A GandA ionly. Thus

Ftota l = F O + F G + F. l

where

FO = KoAo (PG- PS )

FG = AG (PG - PS)

Fi = Ki Ai (PI - PG) + Ai (PG - PS)

K O and K i are the equivalent pressure balancing coefficients.

* See Reference 2
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With the calculated PG for a given thickness h o, K o and K i can be determined from

the formula of pressure distribution; which is function a film thickness, pressure

gradient across the seal width, downstream pressure, and the seal width.

F total is the summation of F o, F G, and F i, and is given in Table III below with

the corresponding K° and K i values.

TABLE III

LEAKAGE AND RESTORING FORCE RESULTS

hoxl0-4 PG' Ftot

(in) (psia) K o Ki (lb)

2 310 0.651 0.5065 1997.3

3 289 0. 650 0. 512 1874.43

4 275 0.6495 0. 516 1798.9

5 271 0.6485 0.5175 1777.1

7 267.5 0. 648 0. 5185 1756.7

At equilbrium,

Fseat = Ftota 1

At openings other than equilbrium

Frestoring = Ftota 1 - Fseat ' where Fseat =PiA4

QFL = face leakage to sump = 2.4 x 10 +6 ho 3 (PG 2 - PS2). Substitute values

of h o and PG calculated for face leakage. Face leakage to sump is then plotted

in Figure 11 for the 300-psi (PA-Ps) condition.

QA = face leakage to ambient = 6.173 x 10 +6 H 3 (p 2 pS 2o i - ). Leakage to

the ambient side was controlled by face opening. These results are plotted as

a dotted line in Figure 11 for the same operating condition.
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Results of calculations at other conditions are illustrated in Figures 12 through 14.

Results of calculations for the Hydrostatic Seal are illustrated in Figures 15

through 18.

4. SPRING FORCE CALCULATIONS

The inertial forces on the seal assembly and the friction force on the piston ring

were calculated in order to estimate the required spring force. The weight of

the steel band which contains the carbon seal is 2.71 pounds and the weight of the

seal itself is 0. 772 pounds, for a total weight of 3.48 pounds, or a weight per inch

of circumference of 0. 158 lb/in. At the condition of AP=300 psi, the sliding

velocity is 500 ft/sec, which corresponds to a speed of 16,371 rpm, or 1712

rad/sec. Assuming a runout of 6x10 -4 inch total indicator reading, and simple

harmonic motion, then

X = sin wt
= _w2 sin _t = -o_2X

where X -- axial displacement and Xma x = 1/2 runout.

then,

G
2Xmax = 2.93x10 6(3x10-4 I

g 3.86x102

=2.28

The equivalent force on the seal's face (FI) is equal to the seal's weight per inch

of circumference times the G-loading. For this case, F I = 0. 158x2.28 = 0.36 lb/in.
The results of these calculations are tabulated below_

AP Velocity Weight F I

(psi) (ft/sec) (lb/in) __G (lb/in)

100 200 0. 158 0.3646 0. 0576

200 400 0. 158 1.458 0.230

300 500 0. 158 2.28 0.36

Frictional forces on the piston ring were calculated using the freebody diagram

shown in Figure 19. Definitions of the parameters used in the calculations are

shown below.

F = Force per inch of circumference on the piston ring in the radial

rp direction due to AP = AP (l-K) (0. 019).
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Frs = Force per inch of circumference on the piston ring in the radial

direction due to its tendency to restore itself to its original shape =

0.15 lb/in.

Frt = Total force per inch of circumference on the piston ring in the radial

direction = Frp + Frs

Cf = Coefficient of friction = 0.2

Fpr = Force on the piston ring in the axial direction due to friction = Frt x Cf

K = Equivalent pressure balancing coefficient: the fraction of AP acting
over the dam area.

The calculations are summarized in the tabulation below:

AP Velocity Frp F rt F pr
(psi) (ft/sec) K__ _ (lb/in) (lb/in I

100 200 0.629 0.705 0.85 0.1710

200 400 0.646 1.344 1.494 0.2988

300 500 0.652 1.98 2.13 0.426

The total force on the piston ring is the sum of the inertial and friction forces.

In calculating the required loading, however, one is interested in G-loadings

greater than or equal to 1.0. Therefore, in calculating the required loading,
F I was taken to be 0. 158 at a velocity of 200 ft/sec., despite the fact that the G-

loading at that velocity is only 0. 3646. The total forces calculated in this way

were divided by a factor of 0.85 to obtain the required loading. This value is a

safety factor to overcome the locking-pin friction, and is based on past experience.
The results of the calculations are shown in Table IV.

TABLE IV

REQUIRED SPRING LOADINGS

AP Velocity FI F r Total Force Required Loading

(psi) (ft/sec) _ _ (lb/in) (lb/in)

100 200 0.158 0.171 0.329 0.388

200 400 0.230 0.2988 0.5288 0.621

300 500 0.36 0.426 0.786 0.925

The average seal operating pressure was 200 psi. At this condition, the

required loading is 0. 621 lb/in. It was assumed that nearly half of this force

would be taken up by the spring: consequently 0.3 lb/in in axial spring force

was required. The total spring force was then 0.3 x 2n x 3. 502, or 6.6 pounds.
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Since the design required 18 springs, the force per spring was 0. 367 pounds.

The characteristics of the spring are listed below:

Material - Inconel X

Operating temp. - 900°F (heat-treat accordingly)

Ends to be ground fiat and square

Wire diameter - 0.03 in.

Mean coil diameter - 0. 450 in.

Total coils - 18

Active coils - 16

Scale- 0.8 lb/in

Free length - 1.336 in

Normal operating length - 0. 877 in

Load at operating length - 2. 367 lb/spring

Stress at operating length - 15,500 psi

5. SEAL RING DISTORTION BECAUSE OF PRESSURE LOADING

The tilting of the seal face because of pressure loading was approximated by

considering only the tilting of the seal support, since the steel support has a

higher modulus of elasticity than the carbon seal. The height of the extruded

section of the steel seal support was determined by matching the position of the

centroid in the x-direction with that of the carbon seal. Thus, the resultant ra-

dial forces pass through the centroids of both pieces. The dimensions of the seal

support and its center of gravity are shown in Figure 20.

To calculate the moment of inertia, it was assumed that the surfaces of A and B

in Figure 20 were plane surfaces,

bh 3 2
I=_ +A_'

12

Member A.- 1/12 (0.225) (0.6) 3 + 0.245 (0. 178) 2 = 0.01181

B: 1/12 (0.613) (0.4) 3 + 0.135 (0.322) 2 = 0.01725

I = 0. 02906 in 4

F r
= AP_ where _ ----distance from face of collar to land face of piston ring

= 300 (0.9) = 270 lb/in of circumference.

- 0.438) = 270 (0. 012) = 3.24 lb-in/in of circumference.

(3.241 (4.0712 = 61.9x10 -6 radian

EI 30x 106x.029

M = Fr (_-_

MR 2

The moment is in the clockwise direction, and the tilting of the steel seal support

will create a converging gas film for the carbon seal nosepiece. This converging
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film (that is one in which the clearance decrease with flow) gives rise to a

positive stiffness and hence stability.

6. DEFLECTION OF THE SEAL ASSEMBLY BECAUSE OF PRESSURE LOADING

The deflection of the seal support was calculated by using the standard formula

for a thick-walled cylinder subject to internal and external loading. The radial

deflections of the hydrostatic seal and the externally-pressurized hydrostatic

seal were determined to be 0. 00016 inch and 0. 00028 inch respectively, for a

pressure loading of 300 psig. The deflection of the clamped seal plate was

estimated from the formula for a uniformly loaded ring fixed at its inner

edge. The deflection amounts to 0. 0000295 inch under an axial pressure load

of 300 psig. The unclamped seal-plate design was also analyzed as described
below.

The cross section of the seal plate is shown in Figure 21. The radius of the

centroid was found to be 3.07 inches from the centerline, and its distance from

the right side was found to be 0.726 inch. The moment of inertia about the radial

axis through the centroid was found to be 0. 1162 inch 4. The calculations for the

moment due to axial loading are summarized in the tabulation below:

F (lb/in) R (in) M a (in-lb. /in. )

F = 1315 lb. / 2_r(3.07) = 68.2 x 3.052 = 208.
P

Fi= 1115lb. /2r(3.07) = 57,9 x 3.269 = 189.2

F G= 490 lb. / 2_r(3.07) = 25.4 x 3. 416 = 86.6

F o =544 lb. /2_(3.07) = 28.2 x 3.563 = 100.6

F R = -34641b. / 2_r(3.07) = -179.9 x 2. 945 = -530.
M a = 54.4

The moment per inch of circumference at the centroid's radius is therefore
54.4 in-lb/in, in a clockwise direction.

The pressure load of 300 psig gives a radial force per inch of circumference of 97

lb/in at the radius of the centroid (3.07 inches). This force acts at 0. 547 inch from

the centroid, producing a moment due to radial loading (Mr) of #-53.0 in-lb/in.

The angular displacement of the seal plate is then,

(Ma+Mr)R 2

0 = = 3.8x10 -6 radians
EI
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7. STRESS ON THE SEAL SUPPORT AND SEAL NOSEPIECE BECAUSE OF

SHRINKAGE

For shrinkage allow

Smin 18 x 10 .3 (radial) inch

Smax = 20 x 10 -3 (radial) inch

Acarbon = 0. 5186 in 2

A = 0o3802 in 2
steel

max

Fma x -
R 2

20 x 10 .3
-- X

(3. 832) 2

X

(EA)stee 1 (EA)carbon

(EA)stee 1 + (EA)carbon

30 x 106 x 0.3802 x 3x106 x 0o 5186

30 x 106 x 0.3802 + 3x106 x 0° 5186
= 1859 lb/in

T = F x R
max

= 1859 x 3. 832 = 7123.68 pounds

T 7123.68

_steel A 0. 3802 = 18736.66 psi

7123.68

acarbon O. 5186 - 13736.36 psi

8. PISTON-RING STRESS

The dimensions of the large and small piston rings are shown in Figure 22. The

large piston ring was used in both the plain hydrostatic seal and the externally

pressurized seal, while the small ring was used only in the externally pressurized

seal. For both the large and small rings, the stress was calculated by assuming

a uniformly distributed load on the ring to calculate the gap closure, and calcu-

lating the stress from the gap closure.

9.43Fr s Rm 4

gap closure = EI
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where F = 0.151b/in
R rs = mean radius

E m = modulus of elasticity

I = moment of inertia

For the large ring, the gap closure was found to be 0. 2368 inch for the plain

hydrostatic seal and 0.2401 inch for the externally pressurized seal. For the

small ring, the gap closure was 0.1546 inch. Given the gap closure, the stress

in the ring can be expressed as:

d (E) (gap closure)
dr =

Pr 9.43 Rm 2

where

apr stress in piston ring due to closing it the amount of the gap closure.

d = radial wall thickness of the ring.

For the large piston ring, the stress was found to be 10,200 psi in the plain

hydrostatic seal and 10,359 psi in the externally pressurized seal. The stress

was 8304 psi in the small piston ring.

9. STRESS IN THE SHROUD AND WINDBACK

To calculate the stress in the shroud and windback, the assembly was divided

into four parts, as shown in Figure 23.

Part 1:

Volume of ring (5.62- 5. 1522 ) (0.15) = 0.565inch 3
4

Weight of ring = 0.278x 0.565=0.157 pound

-6 2
Centrifugal force, F 1 = 28.416 x 10 W 1 Rml n

28° 416 x 10-6 n 2 6= x 0. 157 x 2. 688 = 12. 10-
2

n

Part 2:

W 2

F 2

- r (6.6582- 5.62 ) (0.10) (0.278) = 0.2827 pound
4

= 28.416x 10 -6W 2 Rm2 n2

= 28. 416 x 10 .6 x 0.2827 x 3. 0645 n 2 = 24.61 x 10 .6 n 2
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Part 3:

7r (7. 7162 6. 6582W3 - 4 - ) (0.10) (0.278) = 0.3319 pound

-6 2
F 3 = 28. 416x 10 W 3 Rm3 n

-6 2 -6 2
= 28.416x10 x0.3319x3.5935n = 33.89x10 n

Part 4:

_ 7r (7"982W4 4 - 7.7162 ) (0.70) (0.278) = 0.6335 pound

10-6 2 -6 2
F 4 = 28.416x x 0. 633 5 x 3. 924 n =70.63x 10 n

The results of the calculations are summarized in the tabulation below:

Speed n F1 F2 F3 F4 :; F

(ft/sec) (rpm) (lb) _ (lb) (lb) (lb)

500 16,350 3223.6 6516.7 9061.5 18895.0 37,696.8

450 14,700 2605.0 5266.0 7322.4 15269.0 30,462.4

400 13,100 2069.5 4183.6 5817.0 12130.0 24,200.0

200 6,550 517.4 1046.0 1454.3 3032.6 6050.3

As shown in the tabulation, the maximum total force is approximately 37,700

pounds. Therefore, the maximum force per inch of circumference is 2235 lb/in

and the maximum stress is 22,350 psi per inch of circumference.

I0. THERMAL ANALYSIS

Thermal analysis of the orifice-compensated hydrostatic face seal shows that the

distortion of the seal plate depends largely on the relative temperatures of the

high- and low-pressure air. Temperature distributions were determined analytically

for two situations which differed only in the temperatures of the high- and low-
pressure air.

The temperature pattern shown in Figure 24 is based on typical test conditions

of environmental temperatures, pressures, and air leakage rates. The tempera-

ture pattern shown in Figure 25, was calculated on the same basis, except that

the temperature of the high-pressure air was increased to its design value of 1300

degrees Fahrenheit. When the high-pressure air is cooler than the low-

pressure air, as shown in Figure 24, there will be a convergent film at the

primary seal interface. When the high pressure air is hotter than the low

pressure air, see Figure 25, a divergent film will be present.
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Heat-transfer coefficients for the rotating external surfaces were calculated by

the method in Appendix B. Heat-transfer coefficients for the stationary surfaces

were calculated using the free-convection correlation in Reference 3. Heat-

transfer coefficients for all internal surfaces were calculated from equations in
References 4 and 5. The coefficients for these internal surfaces were then con-

verted to effective thermal conductivities of the air on the surfaces. Table V

shows the thermal properties of the components included in the analysis and the
effective thermal conductivities of the air.

TABLE V

THERMAL PROPERTIES OF THE ORIFICE-COMPENSATED

HYDROSTATIC FACE SEAL

(Reference Figures 24 & 25)

THERMAL CONDUCTIVITIES (Btu/hr-ft-°F)

Shaft

Seal Plate

Carbon

Carrier

Air in windback

Air between plate and fixed guard

Air between plate and rotating guard

Air between carrier and fixed guard

HEAT TRANSFER COEFFICIENTS, (Btu/hr-ft2-°F)

High-pressure rotating surfaces

High-pressure stationary surfaces

Low-pressure stationary surfaces

Rotating guard surface

Fixed guard, "flat plate" surface
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Heat generation at the interface of the seal and seal plate was calculated by the

method shown in Appendix B. This equation is based on air-film shearing con-

siderations. The temperatures of the surfaces and leakage air at the interface

of the seal and plate are also based on the methods of Appendix B. The enthalpy

of the leakage air at the interface increases downstream for the low-temperature

case and decreases downstream for the high-temperature case.
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V. TASK II
MAINSHAFT SEAL EVALUATION

A. INTRODUCTION

Task II had three objectives: the procurement of four seal assemblies of each

of the four seal designs after they were approved by the NASA proj ect manager,

the design and procurement of test equipment capable of testing the seals at the

design conditions, and an experimental evaluation program for each seal design.

The NASA project manager approved all four of the following seal designs:

• Rubbing-contact face seal with piston-ring secondary seal

Rubbing-contact hydrodynamic pad face seal with bellows

secondary seal*

• Orifice-compensated hydrostatic seal

• Orifice-compensated externally pressurized seal

In addition, the contractor tested a hybrid seal which consisted of the basic

orifice-compensated hydrostatic seal running against a spiral-groove seal plate

supplied by NASA.

A brief summary of the various builds and test results is shown on Table VI

through IX. Tables X through XIII show the results of the pretest and post-

test inspections.

* This includes the hydrodynamic ramped-pad primary seal required by a

NASA technical directive.
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TABLE XI11 

ORIFICE-COMPENSATED EXTERNALLY PRESSURIZED SEAL INSPEC TION SUMMARY 

Build No. 
Test Condition 

Static Seal Leakage 
At Assembly 80 psig 
At  Test Stand 20 psig 

40 psig 
60 psig 
80 psig 

100 psig 
120 psig 
140 psig 
160 psig 
180 psig 
200 psig 

Spring Rate  in Assembly 

Total Spring Force 

Total Load (Normal Assembled 

Total Load(0perating Length) 
Total Load (Fully Compressed) 

Tare Wt. 

Length) 

Carbon Dam Height 
0" 
9 0" 
Avg. 

Flatness 
Seal Plate 

SCFM 
SCF M 
SCFM 
SCFM 
SCFM 
SCF M 
SCFM 
SCF M 
SCF M 
SCFM 
SCF M 

lb/in 

lb. 
lb. 

lb. 
lb. 

in. 
in. 
in. 

He It. 
bands 

1 
Pre 

Units 

Fixture 
6.7 
9.5 
11. 8 
15. 0 
17. 3 
19. 8 
21.3 
23.3 
26.2 
28. 3 

13.3 

4.25 
7.2 

7.7 
8.6 

0. 0252 
0.0248 

1 1/2 -3 
1-1 1/2 

2 
Post 

Not Available 

20. 6 
26. 1 
32. 8 
38.8 
43. 6 
75. 0 
75.0 
75. 0 
75. 0 

13. 3 

-- 

4. 25 
7.2 

7.7 
8. 6 

Not 
Recorded 

Unable to 
Measure 
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B. RUBBING-CONTACT FACE SEAL WITH

PISTON-RING SECONDARY SEAL

This seal design is similar to the rubbing-contact seals used in the turbines of

many Pratt & Whitney Aircraft gas-turbine engines. Current practice has been

to use these seals at conditions not exceeding 350 ft/sec, 125 psi, and 800 de-
grees Fahrenheit gas temperature. At these conditions, the seals have been

found to be reliable. It was desirable, however, to include a seal of this type

in the contract in order to determine the limits of its successful operation and
to serve as a comparison to more unconventional seals.

Seven builds of this seal were tested and are described in scparate sections be-

low. In general, it appears that these seals could be improved to a limited ex-

tent by improvements in materials and minor changes in design. Major im-

provements in performance are not likely, however, without major changes to

the basic design concept. Figure 26 is a photograph of the seal with its
instrumentation.

1. Build 1

The objective of Build 1 was to evaluate a standard rubbing-contact seal in

order to establish a performance level to which the other seals in this program

could be compared. The seal lip was 0.200 inch wide, designed with an un-

balanced geometric area ratio of 65 percent. In the operating position, the
spring load was 19 pounds.

The preliminary dynamic checkout program was terminated because leakage

rose above 50 scfm. The seal had been tested at rubbing speeds of 200 and 300

fps, air pressures from 20 to 100 psig, using air at ambient temperatures and

oil at 250 degrees Fahrenheit throughout the tests. The increase in leakage was

caused by insufficient spring load on the seal, resulting in a low pressure

loading. This condition decreases wear, but also sacrifices some sealing

ability at high pressures. The seal assembly was in good condition after the

test, although the seal plate had sludge deposits on the outer surface of its in-

ternal scoop. The results of the test are summarized in Figure 27.

2. Build 2

The objective of this build was to decrease the dynamic leakage experienced

with Build 1 and to decrease the amount of sludge deposited on the internal

scoop of the seal plate. The sludge problem was reduced by enlarging the inlets

to the seal plate's cooling-oil holes.

pACE NO 49
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Figure 26 Rubbing-Contact Face Seal with Piston-Ring Secondary Seal 
1. Transducer to Measure Generated Torque at Seal Interface 
2. Accelerometers 3. Seal Housing and Carbon 
Thermocouples (XP-63615) 
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In order to decrease leakage, the spring loading on the seal was increased to

approximately 30 pounds and the carbon lip width was reduced to 0.150 inch.

These changes enabled the seal to complete the dynamic checkout program with

significantly reduced leakage as shown in Figure 28.

Simulated engine operation tests were run on Build 2 using oil at 250 degrees

Fahrenheit and gas at 800 degrees Fahrenheit. The tests were performed at

static conditions and at surface speeds of 200 and 300 ft/sec° The effect of

temperature on leakage at a rubbing speed of 300 ft/sec was negligible, as

shown in Figure 29. The effect of speed on leakage is shown in Figure 30. The

effect is negligible for low pressure differentials, but significant at higher

pressure differentials.

An attempt was made to test with a rubbing speed of 400 ft/sec at an air tem-

perature of 800 degrees Fahrenheit, but the test was terminated because of

excessive leakage. This test pointed out the need for increased cooling to

enable the seal to operate at high temperatures and speeds.

3. Build 3

The objective of this build was to decrease the wear experienced in Build 2 at

high speeds and temperatures. To this end, an oil-spray manifold was in-

corporated in this build to direct cooling oil at the rear side of the carbon seal

carrier.

The build was run for 5.75 hours, but excessive seal leakage occurred at pres-

sure differentials above 120 psig, as shown in Figure 31. Inspection revealed

that the carbon lip's outer diameter was 0. 036 inch above the required size,

giving a geometric area-ratio imbalance of 0.57 instead of the required 0.65.

4. Build 4

For this build, the Build 3 carbon seal lip was machined to the proper dimen-

sions, lapped, reinstalled in the rig and testing was resumed. Results of the

preliminary dynamic checkout are shown in Figure 32. The seal had performed

well for 9.75 hoers when an abnormal increase in air leakage caused the

breather temperature and pressure to increase excessively. At the time of the

increase, the seal was being tested at a rubbing speed of 400 ft/sec, a pressure

differential of 160 psi, air at 1000 degrees Fahrenheit, and oil at 325 degrees

Fahrenheit.

Inspection showed that the carbon had worn 2 mils in the 9.75 hour s of operation

and that the seal plate had worn slightly in the carbon lip's wear track. The

combination of high speed, high temperature, and high pressure had caused the

carbon seal lip to deteriorate.
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Figure 31 Results of Tests on Build 3 of the Rubbing-Contact Face Seal with

Piston-Ring Secondary Seal
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5. Build 5

In an attempt to extend the operating range of the seal beyond 1000 degrees

Fahrenheit at 400 fps and to prevent deteriorat{on of the carbon seal lip, the

cooling oil flow was increased from 15 ppm to 24 ppm. The build was tested

with a nominal inlet air temperature of 1200 degrees Fahrenheit, accumulating

14.75 hours of operation before the test was terminated by excessive air leak-

age. Results of the testing are shown in Figure 33. The conditions at the last

point tested were a rubbing speed of 300 ft/sec, a pressure differential of 40

psi, inlet air temperature of 1230 degrees Fahrenheit, and oil at 215 degrees

Fahrenheit. Air leakage was 32.2 scfm.

Inspection revealed that the carbon lip had worn approximately 2.5 mils for the

14.75 hours of test time. The wear was not even, however, the surface had

assumed a conical shape with the outside edge an average of 0. 00045 inch higher

than the inside edge. The seal plate was in good condition, although the carbon

lip's wear track was polished with small amounts of carbon-varnish deposits.

The results of the testing indicated that the additional oil had not alleviated the

deterioration of the carbon lip. The coning of the seal was caused by the fact

that the seal wears in while running to conform to the surface of the seal plate.

6. Build 6

The object of this build was to investigate more thoroughly the effects of tem-

perature on the seal's performance. For this series of tests, rubbing speed

was held constant at 300 ft/sec and oil temperature was held at 250 degrees

Fahrenheit. Air-pressure differentials up to 200 psi were used, and the air

temperature was increased from 800 to 1200 degrees Fahrenheit during testing

at each pressure level. Build 6 employed a new carbon seal assembly and the

seal plate from Build 5. The results of the 101.75 hours of testing are shown
in Figure 34.

As shown in Figure 34, leakage increased sharply when the temperature was

increased from 800 to 1200 degrees Fahrenheit at pressures above 100 psi.

At 800 degrees Fahrenheit, the seal's performance was marginal at pressures

of 200 psi and above. At 1000 degrees Fahrenheit, performance became

marginal at 140 psi, and at 1200 degrees Fahrenheit, performance became

marginal at 120 psi. Post-test inspection showed that the seal had only worn

2.2 mils in the 101.75 hours of operation. The wear track on the seal plate

was polished, with small amounts of carbon-varnish deposits and a slight de-

pression (0. 0005 inch deep) was found in part of the carbon wear track.
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These test results indicate that thermal distortion of the seal and seal plate is

a decisive factor in performance. They also indicate that if questions of mate-

rial integrity are left aside, the operational limits of the seal are inherent in

the basic design.

7. Build 7

The objective of this build was to investigate more thoroughly the effects of in-

creasing oil temperature on the seal's performance. Testing was conducted at

a pressure differential of 100 psi, since test results in Build 6 pointed to un-

stable operation at high air pressures and temperatures. Tests were conducted

at 200, 300, and 400 ft/sec. At each of these rubbing speeds, the oil tempera-

ture was increased from 250 to 350 degrees Fahrenheit in 25-degree increments.

This procedure was completed for air temperatures of 800 and 1200 degrees
Fahrenheit.

When the seal had successfully completed the above tests with oil temperatures to

350 degrees Fahrenheit, similar tests were run at air temperatures of 800

degrees Fahrenheit and oil temperatures up to 450 degrees Fahrenheit. The

seal failed when an attempt was made to continue the tests at an air temperature

of 1200 degrees Fahrenheit. At the time of failure, Build 7 had undergone 57.08

hours of operation. A summary of the test results is presented in Figures 35

and 36. Figures 37 and 38 show the effect of the excessive air leakage at 1200°F

on the seal and seal plate.
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Figure 37 Seal and Carrier from Build 7 after 57 .08  Hours of Operation at 
Severe Test Conditions. Note Deterioration of the Springs and 
Carbon Seal (CN-8023) 

Figure 38 Carbon Wear Track on the Seal Plate from Build 7 after 57 .08  Hours 
of Operation at Severe Test Conditions (CN-8019) 
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C. RUBBING-CONTACT HYDRODYNAMIC PAD FACE SEAL

WITH BELLOWS SECONDARY SEAL

The rubbing-contact hydrodynamic pad face seal with bellows secondary seal

was designed and manufactured by the Stein Seal Company. The main objective

of the testing of this seal was to determine whether hydrodynamic pads machined

on the seal face could produce lower leakage and wear than can be attained with

the more standard rubbing-contact face seals. While not entirely successful,

the tests which were performed showed low leakage and low wear.

1. Builds 1 through 3

The dimensions of the Build I seal are shown in Figure 39. The results of the

static pressure check on the seal are shown in Figure 40. After the static

check, prior to start-up, the leakage increased suddenly above 50 scfm at 20

psig. Turning the shaft did not reduce the air leakage. Inspection revealed that

the wafer had lifted off the bellows end fitting and antirotation pin. The wafer

was not damaged, and the rear side only lightly scored by the antirotation pin.

Build 2 used the seal and seal plate from Build 1. The carbon wafer was re-

lapped on both sides to a flatness within two helium light bands. The depth of

the 12 bleed grooves in the bellows end fitting was increased to approximately

0. 020 inch. The diameter of the 12 bleed holes in the centering band was in-
creased to 0. 094 inch.

A static test on Build 2 yielded approximately the same results on the static

test of Build 1. The dynamic test was started at a rubbing speed of 200 ft/sec

and with a 100-psi pressure differential across the seal. The dynamic leakage

varied between 0.6 and 1.1 scfm. After three minutes of testing, the leakage

suddenly increased to a quantity in excess of 50 scfm. Inspection revealed the

same type of malfunction as that experienced in Build 1. The seal assembly

was returned to the Stein Seal Company for their inspection and rework as

required.

To ensure that the carbon wafer would not lift off the end fitting in Build 3,

the volume of the pressure-relief grooves on the bellows end fitting was increased

and a metal band was installed to hold the wafer in position. In addition, a heat

shield for the hot-air side of the seal plate and hub was installed in the test rig.

A static leakage calibration showed slightly lower leakage than had been ex-

perienced on Builds 1 and 2. Immediately after the start of the preliminary

dynamic checkout, leakage increased rapidly and the rig was stopped. A re-

peat of the static check showed significantly increased leakage. Disassembly

revealed that the sleeve of the seal support had rubbed on the heat shield. The

carbon wafer did not separate from the end fitting as in previous builds.
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2. Build 4

An alternate seal design was tested in Build 4. The major difference between

this build and previous builds was in the hydrodynamic pads, as shown in

Figure 41. Some minor dimensional changes were also incorporated.

A static check of the seal gave an air leakage of 2.0 scfm at 100 psig and 5.7

scfm at 200 psig. The preliminary dynamic checkout program was run at

rubbing speeds of 200 and 300 ft/sec and air pressures of 100 tp 200 psi. When

the 400 ft/sec, 100-psig point was set, the air leakage increased sharply and

fluctuated erratically. The leakage remained erratic when the 300 ft/sec,

100-psig point was reset. The test program was then terminated. A static

leakage check resulted in a 10- to 15-fold increase in air leakage over the

initial static check. The results of the dynamic checkout are shown in Figure 42.

Teardown of the rig showed that the carbon was polished and lightly scored on

the pad tops. The carbon wear track on the seal plate showed evidence of

severe seal chattering.
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D. ORIFICE-COMPENSATED HYDROSTATIC SEAL

The objective of this part of Task II was to evaluate a new type of film-riding

seal, a design in which the seal does not contact the carbon, but rides on a film

of air. Nine builds of the orifice-compensated seal were tested. In general,

the performance of the orifice-compensated hydrostatic seal indicated that ex-

tremely careful control of tolerances and thermal gradients is re(mired for

successful operation. This seal was manufactured by the Stein Seal Company.

Figures 43 and 44 show the seal assembled and disassembled.

1. BUILDS 1 THBOUGH 4

In the first four builds, leakage on the test stand was much in excess of the

analytically predicted values. Several solutions to this problem were tried,

including a changed seal-face design, included in Build 4. The new design in-

cluded a revised carbon lip which produced an improved restoring force character-

istic when the seal moved from the designed face-opening clearance.

During the posttest inspection of Build 4, the cause of the high-leakage problem

was traced to the assembly procedure for installing the seal in the test rig. The

assembly procedure called for the hub nut to be torqued to the design require-

ments of 2000 inch-pounds plus 30 to 35 degrees of rotation. This procedure

warped the seal plate so that it was out of flat by 0.0008 to 0. 0010 inch and conical,

with the outer edge 0. 000040 to 0.000080 inch higher than the inner edge.

2. BUILDS 5 THBOUGH 7

In Build 5, the torque on the hub nut was reduced to 2000 inch-pounds plus 5

10 degrees of rotation in an attempt to reduce the distortion of the seal plate.

With this procedure, static leakage was reduced to approximately half of the

amount experienced in the first four builds.

to

Dynamic leakage tests were run on Build 5 at 160, 240, and 320 ft/sec. The seal

failed and the test was terminated at a rubbing speed of 320 ft/sec and a pressure

differential of 80 psi. Test results are shown in Figure 45. Inspection revealed

that the outer lip of the seal was smooth, while the inner lip was worn and rough.

The outer edge of the seal plate was polished, but the inner edge showed four

equidistant burn marks.

In Build 6, a new spring-loaded floating seal plate was used to eliminate distortion

from torque on the hub nut. The new design is shown schematically in Figure 46.

Static testing with a pressure differential of 200 psi at the ambient air temperature

produced an air leakage of 17.2 scfm, about half that experienced in Build 5.
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Figure 43 Orifice - Compensated Hydrostatic Seal 1. Carier 2. Seal-Ring 
Assembly 3. Assembly Guard (XP-66913) 

Figure 44 Components of the Orifice-Compensated Hydrostatic Seal 1. 
2. 18 Springs 3. Piston Ring 4. 3 Antirotation Lock Pins 
5. Carr ier  6. Carbon Seal Ring 7. Assembly Guard (XP-66914) 

C a r r i e r  
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Figure 46 Spring-Loaded Floating Seal Plate
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Dynamic testing was conducted at rubbing speeds of 160, 200, and 300 ft/sec.

As the speed was being set for testing at 400 ft/sec with a 60-psi pressure dif-

ferential, the seal failed. Inspection revealed that the seal failed in a similar

manner to Build 5. The inner lip was worn and the inner edge of the seal plate

showed four equidistant burn marks. Results of the tests are shown in

Figure 47.

Static leakage in Build 7 was about the same as that for Build 6. Build 7 was

tested at a rubbing speed of 400 ft/sec at pressure differentials from 200 psi to

80 psi. After about eight minutes of running at 80 psi, the leakage increased

suddenly and the dynamic test was stopped. A second static check showed that

the leakage for this condition was also excessive. Inspection revealed that the

seal had failed. The seal was found to have a smooth lapped wear path on the

outer lip of the carbon, but the inner lip was worn and rough. The outer edge

of the seal plate's face was polished but the inner edge showed four, equidistant

burn marks. Results of the tests are shown in Figure 48.

3. BUILD 8

For Build 8 the carbon retainer band was lightened by removing material at the

outer surface. This was done to reduce possible inertial loads at higher speeds.

In addition, the annular groove in the seal lip was widened to increase the stiff-

ness of the gas film between the seal and the seal plate.

Inspection of the spring-loaded seal plate assembly in the free condition revealed

that the face of the seal plate was conical, with the inner edge 2 to 2 1/2 helium

light bands (one helium light band = 0. 0000116 in) higher than the outer edge.

After some difficulty with seal-plate distortion when the plate was assembled on

the rig hub, an acceptable flatness of 4 helium light bands was obtained. The

carbon seal assembly was instrumented with two accelerometers, one in the

axial direction and one in the radial direction, to monitor seal vibration during

the test program.

The preliminary dynamic checkout program was discontinued because of a large

reduction in the seal's air leakage characteristics at 400 ft/sec. (see Figure 49).

Inspection revealed that the seal and seal plate were both in good condition. The

carbon seal face was lightly scored on both inner and outer lips, but was flat within

five helium light bands. The rear side of one orifice was partially blocked with

some carbon particles. The seal plate showed little evidence of rubbing.

Before the seal was removed from the rig, it had been tested at air-pressure

differentials ranging from 100 to 200 psi at ambient air temperatures and with

speeds of 200, 300, and 400 ft/sec. A total running time of 54.00 hours was

accumulated at these conditions. The seal air leakages recorded at these con-

ditions were above acceptable limits. For example, the dynamic leakage was

67 to 82 scfm at 200 psi, compared to a static leakage of only 11.0 scfm at the

same pressure. The curve of seal air leakage is shown in Figure 49.
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Testing the seal at air-pressure differentials of 100 and 200 psi and sliding

speeds of 200, 300, and 400 feet per second revealed that oil temperature has a

significant effect on seal performance. A decrease in oil temperature from 250

degrees Fahrenheit to 150 degrees Fahrenheit reduced air leakage by approximately

a factor of five for both pressure conditions. The effect of oil temperature on air

leakage is shown in Figures 50 and 51.

4. BUILD 9

Build 9 was assembled with the reoperated seal from Build 8. The carbon seal

lip height was decreased to reduce the depth of the annular groove from 0.053

to 0. 012 inches in order to reduce the susceptibility of the seal to air hammering.

The final seal lip dimensions are shown in Figure 52.

The seal was instrumented with two accelerometers in the axial direction, 90

degrees apart, one in the radial direction and one for a background reference

accelerometer. The seal was also instrumented with thermocouples to monitor

the carbon and carbon-carrier temperatures.

The high-pressure part of the preliminary dynamic checkout program was com-

pleted with both ambient air and 250-degree Fahrenheit air. The low-pressure

part of the checkout was completed with ambient air only. Prior to this test,

the seal had never been run successfully at pressures below 100 psig with the

seal rotating at 400 ft/sec. Results of the preliminary dynamic checkout are

shown in Figures 53 and 54.

During the preliminary dynamic checkout, the output of the accelerometers was

recorded at steady-state conditions. Data were taken at a pressure differential

of 100 psi at 0, 6,800, and 13,600 rpm rig speeds. The over-all acceleration

level recorded on the axial accelerometer was +0.5 g's at 0 rpm, _:2.2 g's at

6, 800 rpm, and _-4.6 g's at 13,600 rpm. Data were also recorded at lower pres-

sures. The highest acceleration levels recorded were found at 60 psi at all

speeds, and at the 40-psi, 13,600-rpm test point, where the over-all acceleration

level on the axial aecelerometer was _-18.4 g's.

After 42.25 hours of testing, the seal was removed from the test rig for inspection,

and the carbon seal face was found to be flat within 5 helium light bands. The

inner carbon lip had no evidence of contact with the seal plate, while the outer

lip was only lightly scored in some areas. The seal plate was in excellent con-

dition, with no evidence of prolonged rubbing.

In the simulated engine operation program, the seal was started at an air pressure

of 100 psig and a sliding speed of 200 ft/sec (6,800 rpm), using ambient air. As

the temperature was increased, the sealWs air leakage decreased (see Figure 55).
This trend continued to a seal air temperature of 550 degrees Fahrenheit. On
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Figure 49 Preliminary Dynamic Checkout of Build 8 of the Orifice-Compen-
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Figure 52 Dimensions of the Carbon Seal Lip for Build 9 of the Orifice-

Compensated Hydrostatic Seal
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shutdown, an air-temperature control valve was opened, leading to a sudden rise 
of a i r  temperature to 825 degrees Fahrenheit, when the seal  failed because of 
rubbing. 

Inspection revealed that the rubbing had occurred at the inside lip of the seal. 
The inner carbon lip was severely scored and radially tapered 0.0012 to 0.0017 
inch, with the inner edge lower. The outer lip was flat, although scored. The 
coating on the seal plate was worn through at  the wear path of the seal 's inner 
lip. Figures 56 and 57 a r e  close-up posttest reviews of the seal  and seal  plate 
respectively. 

Both Build 8 and Build 9 demonstrated the importance of keeping the seal plate 
and seal parallel to each other. In Build 9, the effect of the increased a i r  tem- 
perature was to set up a diverging gas film, which became more divergent as 
temperature increased and finally caused a catastrophic failure. 

Figure 56 Carbon Seal from Build 9 of the Orifice-Compensated 
Hydrostatic Seal (C N - 8 22 9) 
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Figure 57 Seal Plate from Build 9 of the Orifice-Compensated Hydro- 
static Seal (C N-8 231) 
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E. ORIFICE-COMPENSATED SPIRAL GROOVE HYBRID SEAL

The hybrid seal consisted of the carbon seal from the orifice-compensated hydro-

static seal running against a spiral-grooved seal plate supplied by NASA. The

seal was tested to investigate the effect on performance of combining the hydro-

static action of the seal with the hydrodynamic action of the spiral-grooved seal
plate. In general, the hybrid seal performed somewhat better than the orifice-

compensated seal, but the seal was still extremely sensitive to thermal distortions

and to nonparallel operation.

1. BUILD 1

The seal plate used in Build 1 was oil-cooled to obtain an improved thermal

gradient across the plate. The spiral grooves in the plate were etched 0.00025

to 0.00045 inch deep into the face to a diameter of 6. 660 inches to support the

inner carbon lip should the seal plate cone. The grooves (etched by NASA) are

illustrated in Figure 58. The back side of the plate is shovv_a in Fi_;_tre 59. The

carbon seal assembly from Build 1 of the orifice-compensated hydrostatic seal

was reworked to the dimensions shown in Figure 60 for use in the hybrid seal.

After some difficulity with seal-plate distortion when the plate was assembled

on the rig hub, an acceptable flatness of seven helium light bands was obtained

by reducing the locking torque from 14, 000 to 5,700 inch-pounds. In order to

insulate the front shoulder of the seal plate, a heat shield for the hot-air side of

the seal plate and hub was installed in the rig. The carbon seal assembly was

instrumented with two accelerometers, 90 degrees apart, which monitored the

seal's axial vibration during the test program.

A static leakage calibration resulted in an air leakage of 13.1 scfm at 100 psig

and 28.7 scfm at 200 psig. The high-pressure part of the preliminary dynamic

checkout program was performed at sliding velocities of 200 ft/sec (6,800 rpm)

and 300 ft/sec (10, 200 rpm) with ambient air at pressures ranging from 100 to

200 psig. It revealed no major changes in seal air leakage from the static results.

Testing was terminated by a seal failure at the start of the 400 ft/sec (13,600 rpm)

run with a pressure differential of 100 psig. Disassembly of the rig revealed that

the seal had rubbed against the entire face of the seal plate. Test results are

presented and discussed in Section H.

2. BUILD 2

A reoperated spiral-grooved seal plate was used for Build 2 of the hybrid seal.

The spiral grooves varied in depth from 0.0002 inch to 0. 0010 inch, with an average

depth of approximately 0. 0006 inch. The outer diameter of the grooves was 6.664
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Figure 58 Front View of the Spiral-Grooved Seal Plate Used in the Hybrid 
S ea1 (CN - 828 0) 

Figure 59 Rear View of the Spiral Grooved Seal Plate Used in the Hybrid 
Seal (C N- 82 8 1) 
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Figure 60 Dimensions of the Carbon Seal Lip for Build 1 of the Hybrid Seal

PAGE NO. 85



PRATT & WHITNEY AIRCRAFT

#

PWA-3161

inches. The Build 1 carbon seal dimensions were revised for Build 2. A new

carbon seal assembly of the type used in Build 4 of the orifice-compensated

hydrostatic seal was reoperated to the dimensions shown in Figure 61.

Initial attempts to assemble the seal and the rig produced a waviness of 0. 000200

to 0. 000250 inch in the seal plate face. Inspection of the seal plate in the unas-

sembled condition revealed that the face was out-of-flat by 0. 000080 to 0. 000120

inch, and conical, with the outer edge higher than the inner edge 0. 00007 5 to

0.000120 inch. The seal plate face was then lapped flat to within 0. 000010 inch,

but was still conical within 0. 000030 inch. The spiral groove depth was not changed

significantly, as most of the material removed during the lapping was from the

outer edge of the face. When the hub was reassembled with the relapped seal plate,

inspection of the seal plate face revealed the face to be flat within 0.000110 inch

and conical by 0° 000080 inch, with the outer edge higher than the inner edge.

A static leakage calibration gave the results tabulated below:

Pressure Differential Leakage

{psi), (scfm)

80 12.0

100 16.7

200 36.4

300 52.2

In the preliminary dynamic checkout program, the seal was successfully operated

at sliding speeds of 200 ft/sec (6,800 rpm) and 300 ft/sec (10,200 rpm) using

ambient air at pressures ranging from 50 to 300 psig. The dynamic leakages

recorded were generally higher than the static leakage, as expected. The leakage

at 300 fps was generally I to 3 scfm lower than the leakage at 200 fps for the

same pressure. Several points in the dynamic checkout were run more than

once to detect any appreciable change in the seal's performance. Up to the 400-

ft/sec point there appeared to be no change, however, when a pressure differential

of 100 psi was set at 400 ft/sec, the dynamic leakage dropped below the static

value. Leakage remained below the static value for checks at 120 psi and 140

psi, so the rig was shut down and the seal was removed for inspection. A summary

of the dynamic testing to this point is shown in Figure 62.

Inspection of the seal plate showed light scattered rubbing on the outer lip's wear

track, with one burn mark in the track. The carbon face showed signs of rubbing
in an area between the two seal axial accelerometers mounted on the carbon carrier

and another area approximately opposite it. The areas were approximately 20

helium light bands low and were confined to the outer lip.
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Figure 61 Dimensions of the Carbon Seal Lip for Build 2 of the Hybrid Seal
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After inspection, the seal was reinstalled in the rig and a second test series was

performed. The results of the second series are shown in Figure 63.

Another inspection of the seal plate showed additional light i_bbing although the

carbon seal face remained essentially unchanged. The accelerometers were re-

moved from the seal at this time before a temperature higher than their design
limit of 350 degrees Fahrenheit was reached. The results (_f the third series of

tests are shown in Figure 64.

The third inspection of the seal plate showed evidence of rubbing in both the inner

and outer lip-wear tracks. Another area, approximately 120 degrees clockwise

from the previously mentioned burn mark showed signs of light rubbing on both

the inner and outer wear tracks. A check on the seal plate's runout showed an

increase from less than 0. 0005 inch to 0. 0013 inch. The carbon seal was restored

to its original condition by lapping to a flatness of four helium light bands for the

conclusion of the test. The depth of the annular groove was reduced to 0. 011 inch

from its original depth of 0.013 inch.

Static tests were performed on the reassembled seal at ambient temperatures and

at 400 degrees Fahrenheit. These tests compared favorably with earlier static

tests. At 600 degrees Fahrenheit, the static leakage was less than the leakage
at 400 degrees Fahrenheit.

Brief dynamic tests were conducted at 200 ft/sec with air temperatures of 400

and 600 degrees Fahrenheit. Leakage increased to an excessive level when the

seal was started at 200 ft/sec with air at 300 psi and 600 degrees Fahrenheit,

and remained excessive when pressures of 250 psi and 200 psi were tried.

Static calibration with 800-degree Fahrenheit air and ambient air also revealed

excessive leakage. Results of the final series of tests are shown in Figure 65.

Posttest inspection revealed that both the inner and outer lips had rubbed on the

seal plate. The outer lip of the seal was 0. 0002 to 0.0016 inch higher than the

inner lip. The average wear was 0.0011 inch on the outer lip and 0.0021 inch

on the inner lip. The outer lip was 0. 00015 inch out of flat and the inner lip was

0.00150 inch out of flat. The seal plate showed intermittent rubbing on the lands

between the spiral grooves and one prominent burn area in the wear track of the

outer carbon lip. The seal plate was 0. 0004 inch out of flat. The appearance of

the seal plate is shown in Figure 66.
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Figure 66 Seal Plate after Termination of Testing on Build 2 of the 
Hybrid Seal (CN-9342) 
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F. ORIFICE-COMPENSATED EXTERNALLY PRESSURIZED SEAL

The orifice-compensated externally pressurized seal was tested to see whether

the addition of an external source for the annular groove in the orifice-compensated

hydrostatic seal would improve the stability of the seal. Only one build of this

seal was tested, and the external pressurizing source did not prove to be par-

ticularly helpful: the seal failed in the same manner as Builds 5, 6, and 7 of

the orifice-compensated hydrostatic seal. The outer lip of the seal was smooth,

while the inner lip was worn and rough. The outer edge of the seal plate was

polished, but the inner edge showed four equidistant burn marks. The seal had

completed 11.7 5 hours of testing before failure.

The components of the orifice-compensated externally pressurized seal are shown

in Figures 67 and 68. In addition to the external source, this design incorporated

the spring-loaded floating seal-plate design which was also used in Builds 5

through 9 of the orifice-compensated hydrostatic seal.

For the dynamic checkout, the external pressure was kept 20 psi higher than the

pressure at the inner surface of the seal. At each speed condition, testing was

started at an external air pressure of 100 psig. Then the pressure was increased

to 220 psig, and reduced in 20-psi increments to its original value. The external

pressurizing air flow and the ambient side leakage were recorded at each test

point.

At 200 ft/sec rubbing velocity, the external air pressure was lowered from 100

to 60 psi at 300 ft/sec from 100 to 60 psi; and at 400 ft/sec from 100 to 80 psi,

when failure appeared to be imminent. At this condition, the external pressurizing
air flow decreased from 12.0 to 9.5 scfm after 0.15 hours at this condition. The

test was terminated, and a static leakage calibration indicated excessive air

leakage. The seal had completed the following points before shutdown.

Seal Sliding Speed

(feet per second)

External Air Pressure

(pounds per square inch)

200 220 to 60

300 220 to 60

400 220 to 100

The test seal assembly and the seal plate were removed from the test unit for

inspection. The seal had failed in the same manne_" as the orifice-compensated
5 e. q e_ ¢" ¢_.l.._

hydrostatic seal. The inner carbon lip was _ scored and the plate

coating was worn at the inner lip contact diameter.

PAGE NO. 94



. 
PRATT & WHITNEYAIRCRAFT 

Figure 67 Components of the Orifice-Compensated Externally 
Pressurized Seal (C N- 74 6 6) 

Figure 68 Seal Carrier from the Orifice-Compensated Externally Pressurized 
Seal Showing the Three Inlet Holes for the Pressurizing Ai r  
Supply (C N- 7 46 7) 
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Figure 69 shows the external pressurizing air flow supplied to the seal, and

Figure 70 shows that portion of the external pressurizing air flow which leaks

to the inner surface of the seal. Note that the total external pressurizing air

flow divides itself into leakage to the inner (high-pressure) and leakage to the

outer (low-pressure) compartment of the seal.
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Figure 69 External Pressurizing Air Flow
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G. POSTTEST SEAL INTERFACE ANALYSIS

OF THE ORIFICE-COMPENSATED HYDROSTATIC SEAL

The contractor developed gas-film analytical models for the orifice-compensated

hydrostatic seal and the hybrid seal to verify and improve the performance of the

seal configurations being tested. Agreement between the analysis and experi-

mental results was very good. The three types of analyses performed for the

orifice-compensated hydrostatic seal were the formulation of a gas-film analytical

model, estimates of seal face rotation caused by pressure loading, and estimates

of seal face rotation caused by thermal distortion.

Because the best experimental results were obtained on Build 9, it was used as

the basis for the analytical work. The single feature of Build 9 which improved

its stability was the shallower annular groove. The depth of the groove in Build

9 was only 12 mils, much less than the 55-mil depth used in Build 7. As a

result of this change, the area of the piston-ring bore exposed to high pressure

was increased, shifting the pressure loading on the seal. Thus, the initial tilt

from pressure loading introduced a converging film of a reasonable order of

magnitude, which is extremely desirable for stable operation over a wide tem-

perature range.

1. GAS-FILM ANALYTICAL MODEL

The analytical model of this seal consisted of an annular flat plate with inner

and outer radii R2 and R 1, respectively. The high pressure was located at

the inner edge of the seal and was also used to provide high-pressure air to

the annular groove at radius R c through three feeding holes. Each hole con-
tained four orifices in series. The model took account of the fact that the area

of the seal ring is finite, and treated the individual annular feed grooves with

equivalent inherent compensation. The fact that dishing and crowning of the

seal face with respect to the seal plate results in converging and diverging

gas films was also considered.

a. Parallel Film

For static load and uniform film thickness, the dimensionless Reynolds equation

on both sides of the feeding plane can be written as

1 O [ O P 2 ] d2 P 2r + r 2 d 02 = 0r Or Or

where r = R/R c and P = P/Pa" The second term is zero because of axial sym-

metry. Hence, the solution for dimensionless pressure becomes:

p2= 1 + Cl(ln r)
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where C 1 is an integration constant. Introducing the dimensionless bearing

parameters:

=RI/Rc , V = Rc/R 2 , B =In ,7/In V

C1 can be evaluated for the boundary condition to give the dimensionless pres-

sure.

1-<r_<,l, p2 = l+qlln(_/r) (i)

1/Y_<r_<1 p2 = V 2 + Bq2 In (_r) (2)

By equating the orifice flow and the leakage flow at r=l, we have,

Or r >_ 1 Or r<l
r=l

Inserting Equations 1 and 2 into Equation 3, we get

Vm
(3)

(ql + _9q2) = At Vm (4)

12 /_ N a2 _r"_
where At= V=Ps/Pa

Pah 3 '

ql and q2 can be evaluated in terms of the dimensionless downstream feeding

pressure Pi from Equations 1 and 2 at r = 1, with Pi defined as Pi = Pi/Pa"

ql = (Pi2 - I)/ In

q2 = (Pi2 - V2) / Iny

With values of ql and q2 substituted into Equation 4, the dimensionless down-
stream orifice pressure can be calculated through the iteration scheme in the

equation given below:

where,

Pi 2= [ln_ lnV AtVm+ ln_ +V 2 ln_] /(lnV +ln_)

m = the dimensionless orifice flow = M R_-T-/_ a 2 Ps

(5)

=CD k__k 1 (Pi/v)l/k/1 (Pi/v)(k-_ 1)/k)1/2

for Pi/V.kk + 1]
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= C -'_'k-_" 2 ,_ 1/(k-l)

/ 2 kk/(k-1)

forP i/V < k_'_)

C D is the orifice discharging coefficient given by Figure 71.

With Pi obtained through the iteration process from Equation 5, the leakage rates
can be calculated, and pressure distribution evaluated from Equations 1 and 2.

The dimensionless load _¢ can be found by integrating the pressure function.

-- W W

AI_A _(Ps - Pa) (R12- R22)

2 _'2_'_,Rc Pa

b. Tilting Film

A seal supported on a gas film tends to have a converging or diverging film

(dishing or crowning) due to pressure loading, thermal loading, and initial

tilting of the seal plate. It is necessary to incorporate the effect of dishing

and crowning in the formulation of the present analysis.

Assume that the film thickness can be represented by a linear function of r with

the mean film thickness positioned at (R 1 + R2)/2. The film distribution is

given by

h=a+br

where a= 1- 0.5a(R1" +R2)/Ho, andb_._R /HC O

The governing equation is again given the simplified Reynolds equation

1 [rh3r
Equations 1 and 2 are replaced by the equations below

r dr fl ¢l_<r<_ p2 -- 1 -ql + ql
1 rh 3

dr

rh 3
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Figure 71 Orifice Discharge Coefficient (CD) for the Orifice-Compensated

Hydrostatic Seal (See Reference 14)
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1/)'Sr <_ 1 ' drp2= V 2 _ q2 rh"-'if
J1

where = -a 2 + (a + b r) (a + 2 b r) -

2a 2 b r (a + b r) 2

where
= (p.2 _ 1)/ t _r=l, ql _

j_

2

dr

3
rh

1..L. In (a+br.)a 3 r

and Equation 5 is replaced by

where

Pi 2= (C 1 C 2 A t Vm+C 2+V2C1)/ (C 1+ C 2)

C1 dr , C2 :I 1 dr

c. Feedin_ Mechanism

Orifice feeding is treated as a line feed in this analysis. The configuration used

for the orifice-compensated hydrostatic seal consists of three shallow recessed

slots with four orifice in series positioned in the middle of each slot. The pres-

ence of the shallow recess relieves the pressure in the neighborhood of the or-

ifice, so the pressure in each slot is quite uniform and equal to the downstream

feeding pressure.

Three types of feeding mechanism can easily be incorporated into the present

analysis. The feeding parameter A t as given before applies to orifice restric-

tion only, and its general expression is

12 _ Na 2
A t =

pa h3

where _ = a2/dC

a = radius of the orifice (in)

d = diameter of the circular recess (in)

C = clearance at the end of the recess (in)
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The feeding parameter A t can be redefined as the restrictor parameter A s

Na2 f._. (6)12

A s = At/V = ,li_+_2psh3

for a restricted orifice with 5_0

2 Ps h3
Na = As

12p_

For inherently compensated orifices with 5 )) 1

ps h3
NdC = As

For orifice compensated films, the general expression appearing in Equation

6 applies.

Na 2 ps h3
A

s (7)

This expression is used for the design of the orifice-compensated hydrostatic

seal. It is to be noted that the diameter of the recess is the equivalent diameter

for the area of the finite feeding-slot groove.

Since the feed hole in the present design use four orifices in series, the factor

_in Equation 7 must be modified. In general, for a seal using N feed

holes, each with M orifices in series, Equation 7 becomes

3

Na2 Psh A s

The annular groove was accounted for by merely expanding the line feed to an
annular feed with the pressure in the annulus assumed to be uniform. If the

location of the annulus is given by Rcl and Rc2, the flow must be matched at

R c, the location of the feeding hole.

d. Experimental Comparison

In order to better verify the analytical predictions, they were checked against

data contained in Reference 6, which describes an experiment in which an

orifice-compensated hydrostatic seal was tested to measure its static leakage

and gas-film thickness.
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The seal was composed of a quartz optical flat, a steel stator, and a steel

head plate. The stator was positioned adjacent to the optical flat by means of

an elastomer O-ring which itself was constrained by a groove in the head plate.

Leakage measurements were made by means of three flow meters (covering the

range from 0.03 cfm to 13 cfm) connected to a containment vessel enclosing

the outlet of the seal. Gas-film thickness at three equally spaced circumferential

locations was determined interferometrically using a helium light source corres-

ponding to 11.57 microinches per light fringe.

A schematic diagram of a radial section of the test stator is shown in Figure 72.

A slot was cut wiihin the seal land and provided with twelve supply lines and

orifices such that the back pressure on the orifices, Ps, is equal to the seal

pressure, P2. The average diameter of the 12 orifices was 14.2 _- 1.5 mils.

The quantities L and _^ designate the location of the secondary seal relative
! Z

to the seal land and were maintained at the values indicated on the diagram

throughout the experiments. The initial coning angle was small in each case

so that the stator would tend to distort into a parallel channel as the seal pres-

sure was increased. The actual initial coning (h2-hl) amounts to 21 micro-
inches in this stator. The absolute minimum film thickness was determined

as a function of the seal pressure by means of the light-interference technique.

The stator for the orifice-compensated hydrostatic seal contained an initial

saddle-shaped warp, despite careful preparation, which yielded circumfer-

ential variations in the film-thickness readings. The maximum variation en-

countered was about 170 microinches at a seal pressure of 45 psi. The varia-

tion decreased to about 70 microinches at 315 psia.

It is known that the leakage rate varies approximately as the third power of the

film thickness under circumferentially uniform conditions and it is believed

that the root-mean-cube value of the three readings obtained at each value of

the seal pressure will best approximate the effective constant film-thickness

value for the purpose of comparison with the theory.

Film-thickness data in terms of the root-mean-cube values as a function of seal

pressure is given in Figure 72 with the analytically predicted results. Experi-

mental and analytical leakage rates as a function of seal pressure are given in

Figure 73. The agreement is excellent for the comparison of leakage rates

and satisfactory for the comparison of film thicknesses.

The satisfactory correlation obtained with the experimental results firmly es-

tablishes the validity of the proposed analytical model for this orifice-compensated

hydrostatic seal.
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2. ROTATION OF THE SEAL BECAUSE OF PRESSURE LOADING

The seal's rotation because of pressure loading was analyzed by two methods.

The first method was relatively straightforward, accounting for the angular

rotation directly from considerations of the pressure differential on the steel

seal support. The second method was based on the gas-film equilibrium

analysis by matching the measured leakage rates to the predicted values, thus,

the angular rotation and operating film thickness can be predicted. Further-

more, a refined analysis of first method was based on Kalnins' "Analysis of

Shell Revolutions Subject to Symmetrical and Non Symmetrical Loads",

(Reference 7). Agreement between the two methods was quite good. The

positive sense denotes a diverging leakage path.

a. Direct Analysis

This analysis was performed assuming a pressure differential across the seal

of 200 psi. In addition, the assumption was made that the effect of the carbon

could be neglected, since its modulus of elasticity is so much less than that

of the steel seal support. The centroid of the analytical model of Build 9 and

its dimensions are shown in Figure 74. The plane moment of inertia of the
model is 0. 0194 in. 4 .

The radial force (Fr) on the seal is the summation of pressure over the dis-

tance from the face of the seal plate to the land face of the piston ring.

F r = 200 (0. 925) = 185 lb/in of circumference

Then the moment (M) on the seal section due to F r is

M = F r (0. 925/2-0.39)= -13.5 in-lb/in of circumference

The pressure force on the back face of the seal is located at a radius of 3. 326

inches, and on the front face at a radius of 3. 356 inches. This gives a moment

arm of 0. 030 inch.

The effective area of the seal's back face is _ (3.5022 - 3.152), or 7.356 in 2.

This results in a load of 1471.2 pounds. The circumference of the seal's face

at the center of pressure is 2 _ (3. 326), or 20. 898 inches. Therefore, the

moment from that load is (1471.2) (0.03)] 20. 898, or 2.11 in-lb/in of circum-

ference. Thus, the net moment is -13.5 + 2.11, or -11.4 in-lb/in of circum-

ference.

The rotation of the seal is given by MR2/EI, and is equal to -312 x 10 -6 radians.

Calculations of rotation were performed for both Build 7 and Build 9 at pres-

sure differentials of 100 and 200 psi. They are tabulated below.
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Figure 74 Seal Retaining Band of Build 9 of the Orifice-Compensated Hydro-

static Seal
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Build P Rotation

(psi) (Radians)

7 100 - 65.2 x 10 -6

7 200 - 125.0 x 10 -6

9 100 - 159.0 x 10 -6

9 200 - 312.0 x 10 -6

b. Analysis via Gas-Film Equilibrium Considerations

Using the analysis as outlined in Section 1, curves of dimensionless load (_)
versus film thickness (hm) were obtained for pressure differentials of 100
and 200 psi at an air temperature of 70 degrees Fahrenheit. These curves are

shown in Figures 75 and 76. This analysis also yielded curves of leakage flow

versus film thickness, shown in Figures 77 and 78.

The geometrical balance of this seal can be calculated by taking the ratio

of the back area A B to the front area A F of the carbon seal nose-piece. We
have

Imbalance = AB 3.5 2 - 3.15 2
- = 0.6935

A F 3. 6442-3.152

The dimensionless load _V is defined as load per unit area per pressure gradient.

W = W/_PA F. When the seal is in equilibrium position, the load in the back

of the seal represented by Ap AB ' is equal to W which is_the load generated due

to hydrostatic pressure. By substituting W =_PA B into W = W/Ap AF we have
W = AB/A F = Imbalance.

For the given imbalance of 0.6935, seal tilt was plotted as a function of mean

film thickness in Figure 79. Similarly, Figure 80 was obtained from Figures

77 and 78 using the relationship between seal tilt angle and mean film thickness

from Figure 79. The experimental leakage for Builds 7 and 9 is shown in

Figure 81, and the analytical leakage of the piston ring is shown in Figure 82.

If one has the net leakage by subtracting piston-ring leakage from experimental

leakage, through matching to the analytical leakage he can find the seal's tilt

angle from Figure 80. Using this information, mean film thickness can be

found from Figure 79.
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Seal tilt angle is tabulated below with the values obtained by the elastic seal

support calculation. The comparison is quite good, providing further support
for the analytical model.

Total Net

Leakage Leakage

(scfm) ,(scfm)

Seal Tilt Angle

.(gas film) (elastic)

Operating
Mean

Film

Thickness

hm

(mils)

Build 7 AP = 100 5.9 3.8 -0. 000085 -0. 000065 0. 495

A1_ = 200 14.5 i0.6 -0.000112 -0.000125 0.469

Build 9 Ap = 100 6.85 4.75 -0. 000182 -0.000159 0.547

Ap = 200 20.4 16.5 -0. 000225 -0. 000312 0.554

The rotation of the combined steel seal support and carbon seal was calculated

directly on the basis of Kalnins' analysis. The results of the calculations are

shown in Figures 83 and 84. These values are comparable with the preliminary

calculation but slightly smaller. This result was expected, since the preliminary

analysis was based only on the steel support, while the values of Figures 83 and
84 include the effect of the carbon.

3. THERMAL ANALYSIS

Both direct and indirect methods were used in the thermal analysis. In the

direct method, thermal distortion was calculated from the temperature map

of the assembly and tilt angle was obtained from the distortion. Crowning and

dishing calculated from load balance and leakage rates were then compared to
the tilt angle. For the indirect method, mean film thickness was calculated

from the equilibrium gas-film analysis and compared to the predicted failure
temperature.

a. Direct Method

(1) Temperature Map of the Seal Assembly

In order to improve the thermal analytical model, comparisons were made

between experimental data and the analytically predicted temperatures of four

areas: the steel seal support, the carbon seal nose piece, the disk portion of

the fixed guard, (windback shroud) and the cylindrical portion of the fixed guard.
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The comparison was made for a series of five test condition selected from test

data on the orifice - compensated hydrostatic seal, Build 9.

To perform this comparison, the TOSS computer program which predicts the

temperatures of the four areas mentioned above was used. The temperatures

and pressures of the high- and low-pressure sides of the seal, the leakage

past the seal, the speed of the shaft, and the heat generation at the interface

between the seal and seal plate were used to generate the needed input para-

meters. All of the program's input parameters were taken directly from test

data except for heat generation at the interface, heat-transfer coefficients,
and thermal conductivities.

The heat-transfer coefficients were determined as illustrated in Appendix B.

It was found that varying the heat-transfer coefficients within their range of

uncertainty did not yield analytical temperatures which compared favorably

with the experimentally measured ones. Therefore, the heat generation at

the interface was varied until the temperatures predicted by the program agreed

closely with the temperatures observed in the tests. Table XIV shows the input

parameters for the computer program, the predicted temperatures, the temper-

atures observed in testing, and the heat generation predicted by Appendix B.
The values of heat-transfer coefficients and thermal conductivities used in the

computer program are shown in Table XV. Figures 85 through 89 are analytical

temperature maps corresponding to test cases 1 through 5 on Table XIV.

Table XIV shows that the predicted values of heat generation are substantially

lower than those values which produce good agreement between calculated and

measured temperatures in the seal carrier and carbon. Heat generation cal-

culations have considered only the tangential velocity gradients within the air

film and neglect the radial gradients. The heat generation correlation, however,

may not be the only explanation for the discrepancy between calculated and mea-

sured temperatures. It is possible that holes in the cylindrical portion of the

fixed guard (required for clearance around the accelerometers) influenced seal

temperatures. These holes may have permitted bearing compartment air to

circulate around the seal freely enough to cause a significant increase in seal

temperature when the bearing compartment air is hotter than the high-pressure
air.

(2) Rotation of the Seal Plate

For comparison purposes, the thermal maps shown in Figures 85 and 88 were

chosen, since they represent operation with ambient air at pressure differentials

of 200 and 100 psi, respectively. The thermal distortion was calculated on the

basis of a Raleigh-Ritz finite-element thermoelastic computer program furnished

by Mr. Terry Russell of NASA. The seal's tilt angle was found by taking the

slope of the face of the seal plate.
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With the net leakage rates, the seal's tilt angle and mean film thickness can be

obtained from Figures 79 and 80. Seal tilt angles from gas-film considerations
and from thermal considerations are tabulated below:

AP Case

Net Calculated

Leakage Operating Film

(scfm / Thickness {mils)

Seal Tilt Angle (Milliradians)

Temp. Map Gas Film

100 4 20.9 0.955 - 0.92 -0.69

200 1 63.0 0.85 -0.70

As shown the agreement between these values is marginal.

-0.52

b. Indirect Method

The high-temperature test run of the orifice-compensated hydrostatic face seal

(shown in Figure 90) indicated that the failure started in the neighborhood of 600

degrees Fahrenheit and proceeded to complete failure at 800 degrees Fahrenheit

under the test conditions of 200 ft/sec speed and a pressure differential of 100

psi. Using the gas-film equilibrium analysis outlined in the previous section,

the curves of seal tilt angle versus film thickness and seal tilt angle versus

leakage were found for the conditions of the high-temperature test. The curves

are shown in Figures 91 and 92. On the basis of the net leakage (found from
Figure 90), the seal tilt angle and operating film thicknesses were found from

Figures 91 and 92. The results of these computations are tabulated below:

Temp. Net Leakage Rate Angular Rotation Film Thickness

{°F) {scfm) {radians) Operating (In.x 103) .Min {In.x 103)

70 13.4 -0.000553

0.827 0.689
250 7.7 -0. 000352

0.711 0.623

350 4.2 -0.000042

0.518 0.506
500 1.9 +0.00074

0.326 0.141

In addition, the minimum film thickness and mean film thickness were obtained

as function of temperature, as shown in Figure 93. It is to be noted that the

minimum film thickness approaches zero in the neighborhood of 600 degrees

Fahrenheit, which initiated the failure at the inner edge of the carbon seal.

That the mean film thickness approaches zero _n the neighborhood of 800 degrees

Fahrenheit indicates that the seal cannot operate successfully as a gas-film-
supported seal in this temperature region.
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Finally the film thickness difference from the inner to the outer edge of the

carbon seal nose-piece was plotted in Figure 94 as a function of temperature.

It is interesting to note that /x h went through a transition in sign, which implies

that the gas film was converging at 100 degrees Fahrenheit, approximately

parallel at 365 degrees Fahrenheit, and was diverging at 800 degrees Fahrenheit.

The rate of the change of the thermal distortion can be readily seen from the

slope of the curve. The higher rate of change of thermal distortion makes it

extremely difficult to run a gas seal successfully at high temperature with an
uncooled seal plate.

It is recommended that future seal designs incorporate an oil-cooled seal plate

or a conforming-seal feature instead of the current rigid design.
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H. POSTTEST SEAL INTERFACE ANALYSIS

OF THE HYBRID SEAL

The failure of Build 9 of the orifice-compensated hydrostatic seal occurred at

the inner edge of the carbon seal, leading to the conclusion that the stiffness of

the gas film must be increased in that location and that an oil-cooled seal plate

should be incorporated in order to reduce thermal distortion. The design of

the spiral-groove seal plate, intended to correct these deficiencies, contained

three faults which led to the failure of Build 1 of the hybrid seal. First, the

locations of the spiral-groove and the feeding slot result in a high imbalance

of 84.5 percent at an operating film thickness of 0.3 rail or less, for room-

temperature conditions. Second, the seal plate was not manufactured to the

specified flatness of one or two helium light-band widths. For this reason,

measured leakage rates were two to three times higher than the predicted

values and the tracking of the seal assembly was not satisfactory. Third, at

the operating speed of 400 ft/sec, the stiffness at the operating film thickness

was decreasing instead of increasing, resulting in a complete failure at this

condition.

The design of Build 2 of the hybrid seal was based on the analysis of Build 1.

Most of the faults in Build 1 were eliminated. Build 2 had an imbalance of 78

percent with an operating film thickness of 0.5 mils or greater and an initial

tilt due to pressure loading. The initial tilt was incorporated because of the

satisfactory experience with Build 9 of the orifice-compensated hydrostatic

face seal. Difficulties with the seal plate hampered the performance of Build

2 as well as Build 1. Because of the limited time remaining in the contract,

the intended groove depth was not attained: a variation of 0.2 to 1 mil in groove

depth was measured, the seal plate was not lapped flat in the circumferential

direction, and flatness in the radial direction was marginal, with a dishing of

at least 0.2 milliradian.

Despite these difficulties, the hybrid seal did reach its design limit. Better

overall design of seal geometry will probably perform satisfactorily over the

full pressure and speed range at 600 degrees Fahrenheit. To operate above

this temperature, however, a flexibly mounted seal plate and seal ring will

probably have to be used.

i. ANALYTICAL MODEL

The geometry of the hybrid seal is shown in Figure 95. For the purposes of sim-

plification, it was assumed that the radius effect could be neglected, so the

analysis assumes that the spiral-groove portion extends to infinity. Specifically,

the infinite spiral-groove solution of Whipple (Reference 8) was used.
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The equation governing the pressure distribution in the grooved region AB is:

dx 2 p
(8)

where

P = P/Ps

X =

h __

K 1

x/b

6 uUb

2
Pshm

tH3 -l}(H-1lsin 2

= (H3 +i)2 + 2H3(A+A-I)+(H3-1) 2 cos2

K 2 =

(H3+1) 2 + 2H3(A+A-1)+(H 3 -1) 2 cos2

M 2 24ub
m 2

3
Pshm o s

H _

&h
-- + 1 = groove-to-ridge depth ratio

h

U = mean speed (in/sec)

(lb sec )
= viscosity

in 2
\

m2 = mass flow ( lb sec)in 2

p s = density of upstream gas in 4 ]

A = groove-to-ridge width ratio = Ag/Ar
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/_ = groove angle

h
m

h +h.
= O 1 - mean film thickness

Equation 8 can be expressed alternatively by replacing p2 with

dx

Q giving

(9)

When the groove action is weak, Equation 9 is preferable, because the non-

linear portion is contained in the less dominating hydrodynamic term. If the

groove action is strong, Equation 8 is more useful, since the hydrodynamic

term now becomes dominating.

Approximating Equations 8 and 9 by finite difference equations for each grid

point, one obtains

Pj = P'j-I+ f'J - M2gj (10)

= ' - M g' (11)
Qj Qj-1 + f j 2 j

where

fj = A _ K1, j-1/2
j -1//2

for Equation 10,

for Equation 11,

KI, j-1/2

)3 IIK2, j-1/2 Pj_l/2

(12)

(13)
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for Equation 10, and

gj = _ _ hj-1/2m K2, j-1/2

for Equation 11.

In the land region BD, Equations 10 and 11 are directly applicable if K 1 = 0

and K 2 = 1. Likewise, in region DE, Equations 10 and 11 are applicable if

K 1 = 0, K 2 = 1 andM 2is replaced byM 1, where

In Equations 10 and 11, fj,

The nonlinearity in Equations 12 or 13 is solved by iteration,

Identifying the stations at the edge C of the feeding slot by j = JC, and adding

Equations 10 or 11 from j = 2 to j = JC, one obtains

f'j , gj, and gj' are considered to be known quantities.

M 2

JC

Z

j

fJ - (PJc - P1 )

2

JC

j = 2

for Equation 10, and

JC

j=2
M 2 =

f" - (QJc - Q1 )J

JC

z g[
J

j=2

for Equation 11. Likewise,. identifying the stations at the edge D of the feeding

slot by j = JD, and adding Equations 10 or 11 from j = JD to the last station

j = JE, yields
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M 1

JE

Z

j : JD

f.

J -(PJE -PJc )

JE

E gj
j = JD

for Equation 10, and

M
1

JE

Z

j = JD

(QJE - Q jc)

JE
!

E gj

j = JD

for Equation 11. The flow through the orifice is governed by

7ra 2 ps G [(PG/Ps )]m3 = RT--_

where G [(pG/Ps)] -- CD _ (pG/Ps)

> ( 2 ._k/(k-1)
for pG/Ps \_+'i'-]

1/k I1- (pG/Ps)(k-1)/k j

:CD _ 2k ( 2)l/(k-1)k+l

(14)

1/2

for pG/Ps< C 2 _ k/(k-1)

C_ is given with an approximate polynominal formula in Figure 96. It is to be

no_ed that the values used here are smaller than the values presented for the

orifice-compensated hydrostatic gas seal, since it was assumed that the

orifice contour was diverging, instead of converging.

Matching the flow between the orifice and the gas film requires

m 1 = m 2 + m 3 (15)
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Substituting Equation 14 into Equation 15 and by virtue of the definition of M 1
and M 2, one obtains,

M 1 = Hm G [(pG/Ps)]+M 2 (16)

R_ 2 Na 2 R_ swhere H = 24_b s r a = 12 u b
m

J_hm Ps M+ 5 Pshm R m

b

A
s R

m

N =2rR /_ = Number of feeding holes
m

= Distance between two feeding holes

Rm = -(Ro + Ri)/2-- = Mean radius

A = Restrictor Parameter =
S

2
12 _ Na

M + 5 2
3

Pshm

M = Number of orifices in series per feeding hole

5 = a2/d h
m

a = orifice radius

d = Equivalent diameter of the recessed area per feeding hole

The implication of the restrictor parameter is the same as was discussed in

the section on the orifice-compensated hydrostatic seal.

With the values of M_ and M2 , P _ and QJc ' can be found numerically
from Equation 16 by _he secant mJ_od. B-e_ween iterations, the pressure

distributions are corrected, i.e. the values of gj or f' are adjusted respectively
during each iteration. J
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Once QJC and PJC and the pressure at each station are found, the load and
center of pressure can be determined as follows with the aid of Simpson's

integration formula.

w [i1W = - Pdx - Pa/Ps

bAp 0

O

1
PEd_ - T (pa/Ps)

/ (1 - pa/Ps)

To take into account the end leakage of the groove, the results obtained by

Muijderman (Reference 9) have been employed. According to his findings, the

portion of the ineffective groove depth at the entrance is approximately equal to

one half of the width of the groove.

The dishing and crowning of the seal face are incorporated by assuming that the

film thickness is a linear function of tilting angle. Because the infinite solution

was used in the present analysis, film thickness variation is independent of the

radius.

2. ANALYSIS OF BUILD 1

The groove depth of Build 1 was equal to 0.3 mils on the average, yet it varies

from 0.25 to 0.43 mils. Becauseof the higher measured leakage rates, the

design data for a groove depth of 0.6 mils is also given. The linear imbalance

for this seal design is

£B 0. 333
C_- £F- 0.394- 0.845

while the area unbalance is

A B
_ - (3.5022 - 3.1692)/(3.5632 - 3.1692 ) = 0.8375

UA A F

The linear imbalance is used here for correlation with the analytical results

because the analytical model used assumed a spiral-grooved infinite strip.
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Ambient-temperature test results for Build 1 are given in Figure 97. The

static leakage rate was taken from the run-in value, and the dynamic leakage

rates at 200 ft/sec and 300 ft/sec were taken with an oil temperature of 250

degrees Fahrenheit.

Curves of the dimensionless load versus mean film thickness are presented in

Figures 98 through 100 for various speeds, groove depths, and pressure dif-

ferentials. The corresponding leakage curves are presented in Figures 101

through 103. These analytical results are presented for groove depths of 0.6

and 0.3 mil to provide upper and lower bounds for the seal assembly used.

Analysis of the static results is presented for a groove depth of 0.6 mil only,

because the effect of the grooves is very small at static conditions.

Under static conditions at a pressure differential of 100 psi, the operating mean

film thickness is 0.3 rail for a parallel film (4 = 0) and 0.35 rail for a converging

film (_= -0.2 milliradian) at the equilibrium position (see Figure 98). The cor-

responding leakages (found from Figure 101) are 2.1 and 3.0 scfm, respectively.

If the seal plate runout of approximately 0.1 rail is accounted for, the leakages

become approximately 6.5 scfm, which is in fair agreement with the experi-
mental value of 7.4 scfln.

At 200 ft/sec and a pressure differential of 100 psig, the net measured leakage

rates were equal to 11 scfm, from Figure 97. The operating film thickness is

fairly close to the static value for groove depth, 0.3 mil. The predicted leakage

rates with the adjusted film thickness are approximately equal to 4.5 scfm.

The large difference can only be attributed to the dynamic effects of the seal

plate's runout. Because of the poor correlation on the leakage measurements,

no attempt at calculation of the seal's tilt angle was conducted for this particular
build.

In order to find out the cause of this failure, analytical results for a parallel

film were obtained for a velocity of 400 ft/sec with a pressure differential equal

to 100 and 200 psig. A study of geometrical parameters was also conducted to

find out whether improvements can be made in order to have the seal operating

successfully at 400 ft/sec.

Curves of the dimensionless load versus mean film thickness for several

variations in the spiral-groove configuration are shown in Figures 104 and 105.

The corresponding stiffness curves are shown in Figures 106 and 107. Three

sets of geometrical variation were considered: the variation of groove depth,

the variation of groove-to-ridge width ratio, and the variation of the feeding
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slot recess. The amount of variation of each geometrical parameter from the

original design is tabulated below:

Groove to Width of Inner

Groove Ridge With Feeding Radius of

Depth Ratio Slots Feeding Slot

/Xh inch A=Ag/Ar {inches} (inches)

Normal 0. 0003 3.0 0. 094 3.369

Deep Groove 0. 0006 3.0 0. 094 3. 369

Narrow Groove Spacing 0.0003 1.9 0.094 3.369

Narrow Feeding Slots 0.0003 3.0 0.047 3.416

By increasing the depth of the groove, a higher load-carrying capacity results,

and the stiffness is slightly decreased. If the groove-to-ridge width ratio is

decreased from 3.0 to the conventional optimum value of 1.9, no appreciable

difference is observed for the load-carrying capacity or for the stiffness. The

shortening of the width of the feeding slots provided a larger seal dam area,

resulting in a high loading-carrying capacity and better stiffness character-
istics.

The failure of Build 1 at 400 ft/sec and a pressure differential of 100 psi is

primarily due to the stiffness characteristics of the present seal-geometry

design. It is to be noted that the operating film thickness at this condition is

equal to 0.31 mil. The stiffness for this design starts to decrease instead of

increasing. For film thicknesses less than 0.3 mil, the load-carrying capacity

and the stiffness will decrease. The analysis used here did not account for this
effect.

A loss of stiffness at a pressure differential of 200 psig at the operating film

thickness was also observed for this design, and the narrow feeding-slot

design does show a positive increasing stiffness at the operating film thickness.

If this configuration is to be pursued further, then the narrow feeding-slot

design would be recommended.

3. ANALYSIS OF BUILD 2

Build 2 of the hybrid seal used the basic designs of the seal plate from Build 1

and the seal ring from Build 9 of the orifice-compensated hydrostatic seal.

There were two major alterations in the design, however. In the seal plate
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the grooves were deepened from 0.3 mil to an average depth of 0.6 mil.

Because of time limitations, the groove depth varied between 0.2 and 1.0 rail

in Build 2. In the seal ring, the outer dam was shortened to gain better stiff-

ness and to maintain a film thickness of 0.5 mil, resulting in an imbalance of

78 percent. Analytical predictions of dimensionless load and leakage are shown

in Figures 108 through 119. They were derived by the same methods as were

employed for the orifice-compensated hydrostatic seal.

As shown in Figures 108 through 111, with air at 90 degrees Fahrenheit, the

maximum film stiffness for the configuration with given groove depth occurred

at 0.45 mil for the static condition and shifted to 0.55 mil at 400 ft/sec.

The converging film improves the situation, which implies that the maximum

stiffness occurred at a smaller film thickness. A diverging film gives the

reverse effect, which promotes early failure if not corrected. Increasing the

air temperature improves the stiffness characteristics in general, but only a
small amount. This design's inherent weakness in stiffness characteristics

promoted the failure of Build 2 during a dynamic test at 600 degrees Fahrenheit.

The same procedures were used to estimate the operating film thickness and

seal tilt angle as were used for the orifice-compensated hydrostatic seal.

Curves of mean film thickness and leakage for operation at temperatures of 90

and 400 degrees Fahrenheit are shown in Figures 120 through 124. The data for

the tests at 90 and 400 degrees Fahrenheit are plotted in Figures 125 and 126,

respectively. The data for the test at 400 degrees Fahrenheit were modified by

subtracting the difference between the two room-temperature static calibrations

in order to minimize the effects of the changes which occurred within the seal

during the testing. It should be noted that the seal's face had a larger variation

in flatness during the high-temperature test than during the initial room-

temperature test. This discrepancy may be accredited to thermal creep or to

possible rubbing at low-pressure high-speed conditions prior to the final high-
temperature test.

Matching the measured leakage ratio in Figures 125 and 126 to the analytical

results of Figures 122 through 124, we have the operating film thicknesses and

tilt angles shown in Tables XVI and XVII. Results of room-temperature testing
(Table XVI) demonstrate three significant points:

The operating mean film thickness is equal to 0.5 mil with an

approximately parallel film for moderate and high pressure

gradients.

At moderate and high pressure gradients, the operating mean

film thickness is equal to 0. 625 mil at sliding speeds of 200

to 400 ft/sec. At those speeds, the film is converging at an

angle of 0.2 milliradian (for 200 ft/sec) to 0.15 milliradian

(for 400 ft/sec).
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At low pressure gradients, a severely converging film was

observed for both the static and dynamic runs. Experimental

observation indicates that the outer lip began to rub slightly

during the low-pressure portion of the testing. The poor

performance of this seal may be accredited to its inability

to tolerate the seal plate's waviness at low pressure gradients.

Results of the high-temperature tests gave the following indications:

The operating mean film thickness increased from 0.5 rail at 90

degrees Fahrenheit to 0. 525 rail at 400 degrees Fahrenheit. The

film was again parallel for moderate and high pressure gradients.

The mean film thickness was approximately the same as it was

at 90 degrees Fahrenheit, while the convergence of the gas film

was slightly reduced at pressure differentials of 200 and 300 psi.

At a pressure differential of 100 psi, the convergence of the

gas film has the same effect as the convergence observed at 90

degrees Fahrenheit and 50 psi. This can be accounted for by

the film's lower stiffness at high temperatures.

It was observed that the hybrid seal failed at 600°F with the inner lip severely

worn, thus indicating that the cooling scheme in the oil-cooled seal plate design

was inadequate. Furthermore, the hybrid seal failed at a larger nominal film

thickness and leakage than its counterpart hydrostatic seal because the hybrid

seal has an inferior stiffness value than the hydrostatic seal under divergent

film operating conditions.

In conclusion, these recommendations are suggested:

Major development efforts should be directed towards minimizing the

thermal distortion of the seal plate or incorporating some conforming

capability into the design of the seal plate and seal.

Better combinations of materials for the seal and seal plate should be

selected to withstand momentary high speed rubbing over the full range

of operating conditions.

• The geometrical design of the hybrid seal should be chosen to avoid the

divergent film completely under all operating conditions.
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I. TEST RIGS

A new test rig was designed for use with the seals developed under this contract.

This design was similar in general to many of the test rigs currently in use at

Pratt & Whitney Aircraft. The design objectives of the rig included the use of as

many turbine parts as practical, interchangeability between the four seal types

tested, and the duplication of engine environmental conditions. Flightweight parts

used in the rig were:

• Duplex-ball thrust bearings

• Inner and outer bearing supports

• Thrust-bearing support mount

• Roller bearing, inner race and support mount

• Seal plate*

• Carbon seal assembly

All seals were compatible with the test rig, and were capable of being tested

without any special adapters. In this respect, all seal designs had the same bolt

circle and the same axial length.

The pressure dome was insulated to cut heat losses during testing. Pressurized

and heated air entered the conical manifold attached to the inside of the pressure

dome. In this fashion, the test seal was subjected to test temperature and pres-

sures. Air temperatures at the seal were continually monitored and adjusted by

means of a bleed valve.

Oil was introduced to the thrust bearings by means of a calibrated jet and scoop

arrangement. Oil was introduced to the test seal area from a jet, via a scoop

and passageways which allow under-race cooling of the roller bearing. This oil

was centrifugally thrown out of the seal plate through radially drilled holes.

This procedure also provided cooling for the seal plate. Lubrication of the

roller bearing was from mist and spray in the seal compartment.

*Rubbing-contact face seal with piston-ring secondary seal
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1. RIG INSTRUMENTATION

Figure 127 shows the method which was to be used to measure the generated

torque at the seal-seal plate interface. This method was never fully proven out

on the instrumentation validation rig, however, and was not used on the test

rigs.

A proximity pickup was mounted internally in each of three hydraulic loading

pistons mounted in the rig to monitor the distance to the back end of the piston.

When a wear measurement was desired, the air pressure was slowly increased,

moving the piston forward. This movement changed the output voltage of the

pickup. When the voltage change stopped, the piston was bottomed on the seal

carrier. At that time, the voltage reading was recorded. Calibration curves

were generated for voltage versus distance, in order to provide a means of

measuring wear over predetermined periods of time.

Two accelerometers, 90 degrees apart, were mounted on the seal-retaining

ring. A third accelerometer was mounted on the rig to measure background
vibration.

2. INERT GAS TEST

Figure 128 represents the changes made to the rig in order to test the seals

under a layer of nitrogen. It involves the addition of a double labyrinth seal and

a scavenge system.

3. RIG ANALYSIS

a. Pressure-Vessel Analysis

Stresses in the high-pressure and high-temperature region of the rig were

calculated, and material and geometry selected as shown in the pressure-vessel

summary, Figure 129.

In calculating stresses, a pressure of 300 psi was assumed. Thermal stresses

were based on a temperature of 1300 degrees Fahrenheit at the piston ring hous-

ing flange and 500 degrees Fahrenheit at a distance of 3.5 inches in the direction

of the bearing. A description of the analysis is given below.
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Figure 127 Method of Measuring Generated Torque at Seal Interface
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Figure 128 The Shaded Areas Illustrate the Changes to the Rig which Per-

mitted Testing the Seals with a Layer of Nitrogen on the Oil Sump

PAGE NO. 162



PRATT & WHITNEY AIRCRAFT

PWA-3161

W

a.

O

a.

Q

Figure 129 Pressure-Vessel Summary

pAGe No. 163



PRATT & WHITNEY AIRCRAFT PWA-3161

The cylinder membrane stress is defined as -

PR
(_2 -

t

where P =- uniform pressure = 300 psi

R =- mean radius of circum. - 6.7 in.

t _ wall thickness = 0.2 in.

• _ = 10,000 psi
oo 2

The sphere membrane stress is defined as

PR
%-

2t

= 5,000 psi

If flange stresses are not to interfere with discontinuity stresses, the parameter

B x must be greater than or equal to three (Bx >_3). B , a discontinuity parameter,

for a cylinder is defined as

4

3(1 - v2): t2

where _ = Poisson's ratio = 0.3

Z, fl= 1.0 in -I

Since the distance from flange to discontinuity is larger than 3 inches and

B = 1 in -1, there is no interference between flange and discontinuity stresses.

The radial displacements due to pressure for a cylinder are defined as

_1 - PR2 (1- "/2)
Et
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where E = modulus of elasticity = 23 x 106 psi

:. 31 = 2.5 x 10 .3 in.

and for a sphere

3 pR2
1 = -_ (l-v)

= 1.02 x 10 -3 in.

Thus the shear force acts radially inward on the cylinder.

With equal thickness for cylinder and sphere, the moment at the junction is

zero. Consequently, the transverse shear normal to the wall becomes -

P

-o 8 B

= 37.5 lb/linear in.

The meridional bending stress in the cylinder, defined as

1 6M
O" -- _

1- t 2

is zero since the moment is zero. Consequently, the circumferential bending

stress,

1 1

2 1

is zero.

The hoop stress in the cylinder is defined as

-2Vo

2 t
( BRe-BXcos _x)
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Since X is zero,

a _ -2Vo BR
2 t

= -2,500 psi

Therefore, the total stresses are:

o1= 5,000psi

o 2 = 10,000 + (-2,500) -- 7,500 psi

The maximum discontinuity stresses occur at X = 0.8.

Zo/_X = 0.8

Consequently, the cylinder bending moment due to edge shear, defined as

1 -_X
M=-- Voe sinfix

is equal to 12 lb-in/linear in.

The meridional bending stress in the cylinder,

1
a = 1,800 psi

1

The circumferential bending stress,

1

a = 540 psi
2

The hoop stress in the cylinder,

a2 = -1,120 psi
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Therefore, the total stresses at X = 0.8 are:

(7

1

%

= 5,000 + 1,800 = 6,800 psi

= 10,000 + 540 + (-1120) : 9,420 psi

b. Thermal Stresses

The free thermal expansion of the cylinder at the hot side and the cold side at
an axial distance of 3.5 inches was calculated.

The radial displacement was calculated to be:

8 = Ra AT
i

where

and

-6
a -_- coefficient of thermal expansion = 8.7 x 10

AT = 1,300 ° - 70 ° = 1230°F

R=6.6 in.

Zo 81 = " 071 in.

8 2 = 6.6 (8.0 x 10 -6 ) (500-70) = 0.023 in.

A8 = 81 - 8 2 = 0.048 in.

The angular displacement is then,

A8
O-

X

= 0.0138 rad.

If the continuity is maintained by either rolling or cylinder bending, the resulting

stresses are respectively:

OEc
_rolling - R
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where c- distance from the centroid to the point under stress = 1.5

go arolling = 72,400 psi

= t 1/2
abending 1. 515E _ (-_)

= 103,000 psi

Actually both situations occur simultaneously and the actual stress is lower than

either.

However, if the stress is 72,400 psi, then the strain is calculated to be

O

e-
E

= 0.3 percent

The material selected has a one-way cyclic life greater than 6,000 cycles at

e = 40 percent.

c. Buckling of Piston-Ring Housing

From design curves, the thickness required to prevent buckling is determined

to be 0.054 in.

d. Thermal Analysis

A heat balance was performed on the rig assuming that the shaft rotates in

1300-degree Fahrenheit air, and a calculated heat input from the bearing and

seal. A convective heat-transfer coefficient (from standard equations) was

found for the shaft. Assuming shaft temperatures, the amount of heat trans-

ferred was determined. This heat is conducted through the shaft to the groove

and transferred by convection to the oil. The bearing and seal heat rejection

was transferred in the same manner to the groove.
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A heat balance was required in setting a shaft temperature that would yield

a metal temperature next to the groove whereby the heat input to the shaft

is equal to the heat input to the groove. The results of this analysis are shown

in Figure 130 where the various rig component temperatures are indicated.

e. Critical Speed Analysis

A critical speed analysis was made of the rig plus the drive system to determine

whether or not any critical speed exists within the operating range of the rig.

The analysis is an iterative solution where the actual vibration system is reduced

to lumped masses which are linked together by flexible connections which, in

turn, are elastically supported. This system (Figure 131) can be extended by

adding one or more levels and again lumping masses.

The method is based upon assuming a frequency and, after working across the

shaft or beam, determining a residual function, such as bending moment. If

finis function is zero, the assumed frequency is a natural one. A remainder

curve for the function may be plotted similar to the torque remainder curve of

the Holzer method. It is more complicated than the Holzer method, since four

integrations are involved rather than two, and additional complications arise

in dealing with the boundary conditions.

The differential equation at the natural frequency is

• I dx2/:" (17)

where # is the mass per unit length.

From the elementary beam theory,

EI d2y =M

dx 2
(18)

Hence_

d2M 2
=#_ Y

dx2
(19)
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Figure 131 System Model for Analysis of Critical Speeds
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Since Equation 17 is of the fourth order, four boundary conditions must be

satisfied. Any frequency that satisfies these four boundary conditions is a

natural one. Equations (18) and (19) may be transformed to permit tabular inte-

gration and thus form the basis for constructing the M and y diagrams. Then,

(v) av (20)

A (--_) <uw2AX) Yavg (21)

where A x is the length of a given section and Mavg and Yavg are the average
values of bending moment and deflection for that section.

Equation (20) states that the change in slope of the deflection curve at a given

section equals A x/EI x Mavg. Equation (21) states that the change in slope of

the moment curve at a given section equals_ 2 A X Yavg"

For any assumed frequency, the M and Y diagrams can be constructed to satisfy
three of the four boundary conditions. By plotting the fourth bomudary condition

against frequency, the natural frequency will occur when this remainder equals

zero. The actual calculation method is based upon the following series of

equations.

The shaft or beam is transformed into a number of point masses connected by

weightless springs. The moment diagram has a constant slope in each section,
since

dM
- V

dx

The change in shear at a mass is

AV = mY

The deflection curve is smooth, since the body is continuous. Assume that V o,

M o, O o and Yo are known (refer to Figure 131).

2
V 1 = V o + moY o

M 1 = M o + V 1 (AX)
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M1 - Mo
M = Mo+ -- AX

X (22)

X
1

o- f(EI)1
O

Mdx+ C (23)

where C is a constant of integration. When the distance x is zero, the slope 0

becomes 0o; hence, the constant C = 0 o

Substituting Equation (22) in Equation (23) and integrating,

8 1 IM M1-M° X2.]- +0 o
(EI) 1 o x + (_X) 1 2

(24)

X
1

Y= /O_+C
0

(25)

where C 1 is another constant of integration. When the distance x is zero, the

deflection Y becomes Y ; hence, the constant C1 = Yo"
0

Substituting Equation (24) in Equation (25) and integrating,

i F X 2 MI-Mo X 3

Y - LMo "-_ + + OoX+ Yo(EI)1 (AX) 1 6
(26)

It is only necessary to know 0 and y at the end of the section (that is, at point 1).

Substituting (AX)l for x, and E 1 for (A x/EI)l in Equations (24) and (26) gives

2
V2 =V1 + mlYlW

+0
O

(AX)I + Oo (AX)I + Yo

M 2 = M 1 + V 2 (AX) 2
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By repeating these steps across the body, the moment and deflection diagrams

shown in Figure 132 can be calculated and drawn.

Generalizing the preceding equations, we find that

2
V = +
n Vn-I mn-i w Yn-i

M n=Mn_ l+v n (_X) n

8n=Bn [Mn-1 +Mn]

z-j

Yn = Bn +

where

(AX)n + On-1 (_X)n + Yn-i

It can be demonstrated that V, M, , and Y at any point in the span are linear

functions of the four assumed quantities at the starting end (that is, point O).

Hence, Y, for example, at point n may be expressed as

Y =A V +B M +C 8 +D Y
n n o n o n o n o

where An, Bn, Cn, and D n represent numerical coefficients to be computed.
Since two boundary conditions must be known at point O, only two need be
evaluated.

The boundary conditions for the usual cases are:

Fixed end-

Y =O 8 =0
O O

Simple supported end:

Y =O M =O
O O
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Free end:

V =O M =O
O O

At a common point on adjacent spans: 0 and y are the same for both.

The entire analysis is computerized, with the main input data describing

physically the shaft or rotor, casing, and rotor support. The rotor and casing

configurations must be broken up into spans ranging from one bearing to another.

Each span, in turn, must be broken up into sections of finite length. From

station to station, there are five physical quantities which are defined as follows:

1. Ax - length between stations (inches)
2. Wt - weight at station (lb)

3. _bend - bending flexibility (radians/in-lb)

4. Bshear - shear modulus (in/lb)

5. Igyro - gyroscopic moment of inertia (lb-in 2)

Figure 133 shows an example of how a section of shaft might be broken up. The

shaft weight is concentrated at the stations so that we have a shaft without mass

with the exception of the weight concentration at the stations. B b and Bs describe
the flexibility and shear characteristics of the shaft between the stations.

I_ ._ describes the gyroscopic effect, if any, at the station. Usually Igyro will
be neglected unless a large mass such as a compressor or turbine disc exists

in which case the station will be located to coincide with the center of gravity
of the disc.

Figure 134 is a schematic drawing of the rig analyzed. The system consists of

a driveshaft, a coupling consisting of two splines on an intermediate shaft, the

main span of the rig, and an overhang. The spring constants K 3 and K 4 were
calculated analytically and were found to be 9.22 x 106 and 7.85 x 106 lb/in,

respectively.

Three critical speeds were determined, all of which are well outside the

operating range of the rig (up to 21,000 RPM). The critical speeds are as
follows:

Critical Position R PM Total Energy*

N 1 Coupling 31,887 97.43

N 2 Overhang 60,521 60.20

N 3 Coupling 64,269 62.27

*Percent of total energy of shaft deflection which is concentrated in the section.
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Figure 132 Moment and Deflection Diagrams
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Figure 133 Method of Dividing Shaft for Vibration Analysis
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Figure 134 Schematic of Analytical Model for Rig
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In order to evaluate the influence of the support spring constants, which are

difficult to determine precisely, the analysis was also made using two other

sets of values for K 3 and K4 , to compare with the results for the calculated
spring rates. For one, these spring constants were taken to be 0.8 of their

calculated values; for the other, K 3 was taken to be 5 x 106 lb/in and K 4 was

taken to be 3 x 106 lb/in. K 1 and K 2 were assumed to be 1 x 1012 lb/in since

these bearings were connected directly to ground and could be considered to

be supported by infinitely stiff springs. K 1 and K 2 were not varied for the
three analyses. The three analyses run for the three different sets of values

for K 3 and K 4 indicated a difference of less than 400 rpm at the first critical
point.

For a comparison with the results for the calculated spring rates K 3 and K4:

K 3, K 4 = 0.8 Calculated Values

Critical Position R PM % Total Energy.

K 3

N 1 Coupling

N 2 Overhang

N 3 Coupling

= 5 x 106 lb/in, K 4 = 3 x 106 lb/in

31,819 97.34

55,597 72.51

63,695 74.22

Critical Position RPM % Total Energy

N 1 Coupling 31,492 95.16

N 2 Overhang 40,900 73.22

N 3 Coupling 61,792 73.72

4. INSTRUMENTATION VALIDATION RIG

An existing Pratt & Whitney Aircraft seal test rig was modified to develop the

instrumentation techniques necessary to measure the torque generated at the

seal face, the seal wear, the hydraulic loading, and the seal's vibrational modes.

Initial attempts to use the torque measuring device revealed that the load range

of the transducers being used was too large. The transducers selected had a

range of 0 to 100 pounds, whereas the measured loads were on the order of

3 pounds. This large difference apparently came from the fact that the face-

contact seal was not operating at a constant rubbing condition but instead was
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partially riding on an air film available from the air leakage. In addition,

vibration of the torque arms introduced errors in the transducer readings. An

attempt was made to eliminate the vibration problem by deadweight loading the

force arms. Testing, however, revealed that the deadweight loads had not

been distributed equally between the two force transducers and the vibration
was still excessive.

The program was rerun on 28 December 1967. Tapping the hanging dead weights

to reduce the static friction of the cable system improved the load split between

the force arms. However, the loads due to torque generated at the carbon seal

lip and seal plate interface were too small to be accurately detected with the

present 0-100 pounds range force transducers.

Smaller transducers were procured, but additional redesign of the transducer

mounting system is required to eliminate the vibrational problems in the

torque arms induced by the shaft rotation and motion of the seal assembly.

Testing was conducted to develop instrumentation for measuring seal wear

without disassembling the rig. The method studied to measure seal wear in-

volved measuring the displacement of the seal-loading pistons with Bently

probes. For the first test, the rig was run for 16.75 hours at a rubbing speed

of 300 ft/sec and a pressure differential of 20 psi, with the air at ambient

temperature. The probe data indicated zero wear, within an accuracy of 1 mil

because of piston vibration. The actual wear was 0.2 rail. After running for

14.50 hours at a rubbing speed of 400 ft/sec and the same pressure differential

and air temperature, one probe indicated a seal wear of 3.4 mils, the second

indicated 10.3 mils, and the third was inoperative. Actual wear was 0.2 mils.

The inconsistencies were caused by vibration of the pistons when they were in

contact with the seal. The vibrations varied in amplitude to a maximum of 10

mils at frequencies considerably below the rig speed. Increasing the spring

preload reduced the peak vibration amplitude to 6 mils and increased the

vibration frequency to rig speed.

The rig was then run at a rubbing speed of 200 ft/sec with ambient air tempera-

ture and pressure differentials ranging from 20 to 200 psi. It was found that

the total displacement of the cylinders was dependent on the seal air pressure,

apparently because of axial displacement of the rig bearing with changing thrust

load. With a seal pressure differential of 20 psi, the average travel was 27.6

mils, whereas with a seal pressure differential of 200 psi, the average travel

was 20.0 mils. The movements of the three pistons, however, were within 1 mil

of each other at all times. Considerable additional experimentation is required

to develop this technique to an acceptable level of accuracy.
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The hydraulic loading measurements were not effective when obtained under

dynamic conditions. The seal air leakage increased gradually when the three

piston push rods were moved to a position of contact with the seal. The loading

required to increase the seal's air leakage was barely above the pressure

loading required to overcome the piston preload. The Bently probe readout

revealed the pistons to be subjected to vibration.

The static hydraulic loading results were considerably higher than the dynamic,

and compared favorably with the analytically calculated values of the hydraulic
force due to the seal's unbalance.

The test seal was instrumented with two accelerometers 90 degrees apart to

record the axial vibrational modes of the seal (Figure 135). The test rig

housing was also instrumented with an accelerometer to record the background
vibration.

The seal was tested at rubbing speeds of 200, 300 and 400 feet per second

using ambient air at pressures from 20 to 200 psig. The program was completed

16 February 1967 with the accelerometer output signals recorded at each condi-

tion. Analysis of the recorded data revealed high-frequency noise superimposed

on the output of the two seal accelerometers and the external background accel-

erometer, making the data difficult to interpret accurately.

The program was repeated with the accelerometer output signals filtered to

eliminate frequencies below 80 cycles per second and above 600 cycles per

second. The recorded data still contained noise making it difficult to analyze.

The program was again repeated using a wave analyzer at each condition to pick
out the predominant accelerometer output signal frequencies to see whether

frequencies above 300 cycles per second could be filtered without losing any

significant portion of the output signal.

Analysis of the accelerometer data revealed that for the rubbing-contact seal

being tested in the validation rig, output signal frequencies above 300 cps and

below 60 cps could be filtered without losing any significant portion of the

output signal.

The program was rerun with the accelerometer output signals filtered to

eliminate frequencies below 60 cps and above 300 cps. The analysis revealed that

the overall acceleration level of the axial accelerometers (mounted 90 degrees

apart on the seal) was more dependent on shaft speed than on the air pressure

at the seal. The overall acceleration level at 200 fps (6,550 rpm) varied from

+1 g's to +2 gTs; at 300 fps (9,800 rpm) from +2.8 gVs to +4.3 g's; and at 400 fps

(13,100 rpm) from _5.7 g's to +7.2 gVs for the pressures tested. The lag angle

between the two axial accelerometer output signals varied from 90 to 180 degrees.

They were never recorded in phase.

Further accelerometer work was continued on the main seal test rigs.
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Figure 135 Test Seal Assembled in the Instrumentation Validation Rig Cover. 
1. Transducers to Measure Torque Generated at Seal Face 
2. Accelerometer 3. Seal Housing and Carbon 
Thermocouples (XP- 66 9 0 8) 
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APPENDIX A

DEFLECTION ANALYSIS OF SEAL HOUSING

FOR RUBBING - CONTACT SEALS

It was desired to be able to determine the deflections of the seal-housing as-

sembly. A detailed analysis was performed yielding eight equations with eight

unknowns. These equations were solved simultaneously on the IBM 1620 com-

puter. The equations are arrived at by equating the slopes and deflections of

contiguous members to ensure continuity of structure. For example, referring

to Figure 136, the deflection of cylinder (3) at A is equal to the deflection of

cylinder (2) at A, and the slope of (3) is equal to the slope of (2) at A.

The following is a detailed description of the analysis. The equations are based

on material given in Roark's "Formulas for Stress and Strain", (Reference 1).

A free body diagram of the seal design is sketched in Figure 137. Bodies 1, 2,

and 3 comprise the carrier; body 4 the seal; body 5 the carbon retention ring; P

refers to pressure; M refers to moment; V refers to shear; L refers to hori-

zontal length; h refers to vertical length; and R refers to radius.

i. DEFLECTION OF BODY 1

The radial displacement of body 1 (see Figure 138) at point A (6A1) and the
corresponding angular displacement 8, are given by the following equations:

PoR? VIRI 2 V3(R 1 + d)R 1

'A 1- Eh 1 ELlh I ELlh 1

)
M4 R I

+
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Figure 136 Division of the Seal and Housing Assembly
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The radial displacements of body 1 with respect to points B, E, and H are

represented below:

SB1 : 6A1 .- 1/2 Lle 1

SE 1 : SA1+ 1/2 Lle 1

_HI: _A1+ 1/2 L1e 1

where E = modulus of elasticity

(Flange contribution is insignificant to torsional stiffness since it is scalloped. )

2. DEFLECTION OF BODY 2

The radial displacement of body 2 (see Figure 139) with respect to point D (5D2)

and the corresponding angular displacement @2 are given below:

P1R4R2 V1R1R 2 V2R2R 3

$D2- _ +Eh2L 2 + Eh-_2

@2= R22

EI 2 (M2 - M1)

The radial displacement of body 2 at point B, 6B2 = _D2
The radial displacement of body 2 at point C, 5 C

(Moment due to pressure P2 is assumed negligible) 2 D2

3. DEFLECTION OF BODY 3

The radial displacement of body 3 (see Figure 140) at points C (5C3) and the
corresponding angular displacement @3 are given below:

_ V 2
C3 Eh 3

\2D), /
3

Eh
3

where D = ; _, =2
12(1- K )

- M 2

R32h32

1/4

and C 3, C4, C 5, C6 are constants dependent on ),L 3 and are given in Refer-
ence 1, p. 297.
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,B

Vj

P2
_D2

t
8c2

P,

Figure 139 Freebody Diagram of Body 2

_,_!_ tt
Pl

Figure 140 Freebody Diagram of Body 3
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4. DEFLECTION OF BODY 4

The radial displacement of body 4 (see Figure 141) at point F (_F4) and the

corresponding angular displacement E)4 are given below:

= PIR5 (R5 - 1/2 h4) PoR5 (R5 + 1/2 h4)
- +R5_T

F 4 E lh4 E lh4

R52

04- Eli4 (M3+ P4 a)

where

o

/] = (aI - a)

aI = coefficient of thermal expansion of carbon

a = coefficient of thermal expansion of housing material

E 1 = Young's modulus of carbon

_T = operating temperature - room temperature

DEFLECTION OF BODY 5

The radial displacement of body 5 at point G (5G5) and the corresponding angular
displacementO 5 are given below:

R6(R 6 + b)

6G5 = EL 5 h5 V3 (V 3 acts at bolt circle radius)

5

R 6 +b

E 15 R 6 C - M4(R6 R6+b )1

The radial displacement of (5) at point H, _H5 =_G5
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P4

Po

F4

tttt
PI

_F4

Figure 141 Freebody Diagram of Body 4

M4 H j,_H5

V3 ll_' / "P5

8G5

M

Figure 142 Freebody Diagram of Body 5
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6. RELATIONS BETWEEN P2, P4, AND P5

From lateral equilibrium,

P2R5h4 = P4 (R5 + a)

P4 (R5 + a) = P5 (R6 + b)

P2R5h4 P2R5h_

P4-R5+a , P5- R6+b

7. SLOPES AND DEFLECTIONS

Slopes and deflections were equated to insure continuity of structure:

]BI = SB 2 O1 =02

5C 2 =6C 3 0 2 =e 3

_F4 = 6AI O1 =0 4

=6
6H5 H 1 01 =0 5

There exist 8 unknowns (Po, Vl, M1, V2, M2, V3, M3' M4) and 8 simultaneous

equations. Consequently, the problem is solvable. The desired results are

6E1, and 01, which represent the radial displacement and rotation of point E.

The moments of inertia are approximated for this analysis to be

3
In= 1/12h nL n wheren=l, 2, ... 5

The simultaneous equations that were solved on the IBM 1620 computer are as

follows -

R12 R12 RI(R 1 + d) R12 L 1
= : Po _-Vl_ -V3

6B 1 6B 2 hI L 1 hI L 1 h I 2 I1
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M M 3
+i/2 vl LI- I/2v3LI\-_; -P5 _ d

= Pl R2 R4 R1 R---'---2 R2 R3
+ V 1 + V 2h2 h2 L2 h2 L2

2
R 3 C3E C5E

_C2=_C3 : PI _-3 - V22Dk3 M22-_=PI

-+V I
h 2 L 2 h2

R2
+ V 2 _--h2

2
R 1

=

_ _ "o-_/

2
R

1

- V 1 L 1 h I V3

R 1 (R 1 + d) ER 5 (R5-1/2h 4)

L1 h 1 = P1 E 1 h 4

ER 5 (R 5+1/2h 4)
-p

o Elh 4

R 6 (R 6 + b)

= : V 3 L 5 h 56H 5 _H 1

+ R 5 E_SAT

2 R 1 + d)R12 R I (R 1

= Po h-_-- - Vl L---_I - V3 Llh I

R12 LI 1
+_ _ MI-M 3+ 1/2VIL 1

2 11

IR I + d_

2

R__!_I
01 = 6)2 : 11

0 2 = 03 :

- 1/2vshk RI / P_\RI

{R I +d_ - P5 d
M1 - M3+ 1/2 VlL1 - 1/2 VsL1 k R1 /

+M4 IRl+dll R2A\ R1 = 12 (M2-M1)

R22

12

C4E C6E
(M 2 -MI) =:V 2 _- M 2 -_
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O1 = 04 : 11

R 1 E 1 14

e 1 = 8 5 :

I_ VILI-I_ VsL I

(M 3 + P4 a)

RI2 {M I_ M 3
I I

+M_RI+ d_ R6 2

+1_ VILI-I_ V3L1

+ P4
P5 k R 6 / _ R6 /

Rl+d Rl÷d

R1 -P5 d R1 +M4
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APPENDIX B

THERMAL ANALYSIS

For the purpose of thermal analyis, the critical components of the seal assembly

or the seal itself, the seal plate, seal carrier, shaft, and any other structure

near the seal or seal plate, such as the heat shields. Proper evaluation of the

temperature distribution is dependent on knowledge of the following quantities:

power generated at the interface of the seal and the seal plate, heat-transfer

coefficients on all surfaces (including the mating surfaces of the seal and seal

plate), and heat-transfer coefficients of coolants. The coefficients can be closely

approximated from existing empirically derived data. However, assigning a value

to the heat generation at the interface is more difficult. For the rubbing contact

seal, heat generation due to friction as well as continuous film shear was analyzed.

However, since the torque on the seal could not be measured accurately, and it
was felt that a continuous film of air existed between the carbon and the seal

plate, further analyses were conducted using a continuous air-film shearing

concept which was developed for the gas-film seal analysis.

The uncertainty in the value of the heat generation for film shear is due to

uncertainty of film-thickness, and local velocity gradient within the film. The

local velocity gradient is complicated by the existence of two components of

velocity: the tangential velocity due to shaft rotation and the radial velocity due
to the air leakage.

Temperature distributions within critical components of the mainshaft seal were

obtained by dividing the components into a finite mesh of nodes. The mesh

geometry was then input on the TOSS Computer Program from the SHARE

General Program Library. The TOSS program employs a method whereby an

initial guess for the temperature distribution is "relaxed" in a cyclic order and

a new temperature:distribution is obtained after each cycle or iteration. Ter-

mination of the iteration is determined by a preset temperature tolerance. The

reliability of the analytical model was demonstrated by comparing experi-

mentally determined temperatures with analytically predicted temperatures.

1. HEAT-TRANSFER COEFFICIENTS

In this section, the coefficients of heat transfer which were used on various
surfaces will be described.
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a. Rotating Disks in Free Air

The correlation which was used to calculate the heat-transfer coefficient on

rotating disks is found in Cobb and Saunders (Reference 10). They define the

Reynolds Modulus as
2

P_r

RCOBB = ----.---;_

where,

P = density of fluid in which the disk is rotating

= viscosity of fluid (lb mass/foot hour)

r = radius of revolution (feet)

= angular velocity, (radians/hour)

For the laminar range, Cobb and Saunders recommend

where,

0.5

1×105< - RCOBB _- 2×105

h = heat transfer coefficient (Btu/hour ft 2 F °)

k = thermal conductivity of fluid, (Btu/hour ft°F)

In the turbulent range, Cobb and Saunders recommend

hrk - 0.015 (RcoBB) 0.8

(27)

(28)
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Equation (28) is applicable for RCOBB _>2.4 x 105.

Wagner, (Reference 11), predicts theoretically for the laminar regime when
the fluid is air

) 0.5 (29)
h_r = 0.335 RCOBB
k

Equation (27), which is empirical, and Equation (29), which is theoretical,

agree fairly well. It should be pointed out that various authors employ different

definitions of the Reynolds modulus in rotational heat transfer; hence, the

subscript COBB.

b. Rotating Cylindrical Surfaces in Free Air

The correlation which was used to calculate the heat transfer from rotating

cylindrical surfaces is due to Etemad's correlation (Reference 12). He

recommends

where,

2hrk - 0"11 ( 0"5R2ETEMAD Pr) 0"35

RETEMAD = 2 RCOBB

Pr = Prandtl modulus

Equations (28) and (30) are in close enough agreement so that where disk and

cylindrical surfaces form a continuous surface, a smooth transition exists in
the coefficients of heat transfer.

(30)

c. Stationary. Surfaces

The heat-transfer coefficients for the stationary surfaces were calculated using

the standard free-convection correlation in Reference 3. It should be noted that

the free-convection coefficient on the high-pressure side of the seal is much

greater than on the low-pressure side because of air density.
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d. Oil Flowing within Coolant Passages

Figure 143 is a design graph for oil flowing in coolant passages. The graph can

be used to determine the heat-transfer coefficient and the pressure drop of the

oil if the passage's diameter and the oil's flow rate are known. The graph was

derived on the assumption that the oil filled the passage. The physical properties

of the oil were evaluated within the 500- to 600-degree Fahrenheit range. If the

W
locus of --

n

and D lies below the dashed line marked "LAMINAR", then the oil

flow is laminar, and the heat-transfer coefficient is given by the single solid

line marked "LAMINAR" which is independent of passage diameter. The coor-

W - 67dinates of this line are -- and hA/L 0" . If the locus of and D lies abovew
n n

the dashed line marked "LAMINAR", then the heat transfer coefficient is

given by the lines labeled (hA/L) TURBULENT" Interpolation between lines is

to be made logarithmically. The pressure drop in psi per inch of flow length is

determined by the locus of W/n and D. The quantity A on the graph is the heat

transfer area. The two lines marked (hA/L) = 0.5 and 1.0 are not parallel to

the other (hA/L) lines because these two lines correspond to the transition-

regime flow and the latter group of lines correspond to the turbulent regime.

The Sieder-Tate empirical equation was used for Reynolds numbers less than

2100 to determine heat-transfer coefficients. For Reynolds numbers greater

than 10,000, the Dittus-Boelter equation was used for the heat-transfer coef-

ficient. These equations may be found in Reference 13, pages 137 and 132,

respectively.

e. Surfaces Rotating Near Other Surfaces in the Gas-Film Seals

The heat-transfer coefficients for cylindrical and disk surfaces rotating close

to other surfaces were calculated from References 4 and 5. These correlations

were applied to the following three locations: cylindrical surface of the seal

plate rotating within the fixed guard; the disk surface of the seal plate rotating

within the rotating guard; and the windback seal mating surfaces. For these

three locations, the correlation given in Reference 5 was applied, namely,
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Figure 143 Oil Flow in Coolant Passages
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h 6 r 0. 175 w (A r} 3/2 R1/2= p (31)
k

where

ft2°Fh = heat transfer coefficient (But/hour - )

k = thermal conductivity of air (Btu/hour - ft°F)

p = density of air (lbs-mass/ft 3)

A r = radial clearance between cylinders (feet)

= rotation of cylinder (radians/second)

= viscosity of air (lbs mass/ft-hour)

R = radius of cylinder (feet.)

When applying Equation 31 to the rotating disk portion of the seal plate within

the rotating guard, A r was replaced by the average axial clearance and R was

replaced by the average radius of revolution. In order to reduce the number of

internal thermal connections in the analytical program, the heat-transfer coef-

ficients for these three locations were converted to equivalent thermal con-

ductivities of the air between each pair of surfaces.

f. Exterior Surface of the Disk Portion of the Fixed Guard in the Gas-Film Seal

Since the leakage air exiting from the windback partially scrubs the disk portion

of the fixed guard, the resulting heat transfer from that surface is certainly

greater than for free convection. To account for this effect, the following equa-

tion from page 268 of Reference 3 was used.

h_r _ 0.664 r p Pr
k

1/3
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where = heat transfer coefficient averaged over distance Ar (Btu/hour-ft2F°)-

A r = length of flat portion of fixed guard (feet)

k = thermal conductivity of air, (Btu/hour-ft°F}

= viscosity of air (lbs-mass/ft-hour)

p = density of air (lbs mass/ft 3)

= free stream velocity of air (ft/hour)

Pr = Prandtl modulus of air

2. EnerEv Balance at Interface of Seal and Seal Plate for Sheared-Film Concept

The temperatures within the leakage air and at the interface of the seal and seal

plate were determined from the following analysis.

Consider a control element (Figure 144) into which a fluid enters with enthalpy

rate WC T and out of which a fluid leaves with enthalpy rate WC
p o p

[To+(dTo/dX)dx ] Total power generation within the element is defined as PLdx.

The heat-transfer rates from the element to surfaces 1 and 2 are h 1 (To-Tsl)

Ldx and h 2 (To-Ts2) Ldx, respectively. *

At steady-state conditions, the rates that energy enters and leaves the element

are equal. Therefore,

WCpTo+PLdx = WCp(To+_-_ dx) + (hl(To-Tsl)Ldx + h2(To-Ts2)Ldx

Rearranging,

dT° + (hl + h2} L__._To - (hlTsl + h2Ts2) ' L _ PL

dx WCp WCp WCp
= O (32)

*The convective potentials should be written as (Taw 1- Tsl) and (Taw 2- Ts2) for

surfaces 1 and 2 respectively; where Taw is the adiabatic wall temperature. It

has been-assumed that Taw = T .
O
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hl(T o - Tsl) Lax (SURFACE 1)

WCpT° Ld WCp(To+ _ dx)

h2(T o - Ts2) Ldx (SURFACE 2)

Figure 144 Analytical Element for Seal-Temperature Calculations Based on

Film-Riding Assumption
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where:

W =

Cp =

T O =

h 1, h 2 =

Ldx =

P =

Tsl, Ts2 =

X -_-

Mass fluid flow (lb/hr)

Specific heat at constant pressure of fluid (Btu/lb-°F)

Total Temperature of fluid {function of x), (°F)

Heat transfer coefficients at surfaces 1 and 2 respectively,

But/hr-ft2-°F, not necessarily equal.

Surface area on either side of fluid (ft 2)

Uniform power generation per surface (Btu/hr-ft 2)

Temperature of surfaces 1 and 2 respectively, (°F) (assumed to

be constant within the element dx)

Coordinate in direction of fluid flow (ft)

By defining:

L
K-

WCp

and substituting into Equation 32,

(hlTsl + h 2 Ts2 + P)

dT----° + (hl+h2) ( L T°/ -K=Odx WCp

Rearranging:

dT (hl+h2)
o + _ Ldx = O (33)

WC
P

To - [KWCp

(h I + h2)L

Equation 33 can be integrated directly if everywhere within the limits of in-

tegration the denominator of the first term does not equal zero. Also, to justify

the assumption that Tsl and Ts2 are constants within dx, the range of
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integration should be small. In terms of applying the solution of Equation 33 to

a finite-difference program on a digital computer, the assumption presents no

obstacle because temperatures must be taken as constant for finite distances.

Integrating Equation 33 for

O! x<_ w

<
Tol - To <- To2

Yields:

Defining:

1D
.To2

_ KWCp ]

(hi + h2)LI +

(hi + h2)LJ

(h i + h2)Lw = 0 (34)

WCp

hl Lw

WCp
= NTU 1 and h2 Lw = NTU2 (35)

WCp

Substituting Equations 34 and 35 and rearranging yields:

Tol - (hI + h2)L = eNTUI + NTU 2 To2 (hI + h2)L
(36)

Equation 36 is the solution to the differential Equation 32, but its form cannot

be used in the T(_SS computer program. The following analysis was, therefore,

required to alter Equation 36 to a form suitable for the T_SS program. To sim-

plify the algebraic manipulations, Equation 36 was written in the form

To1 - Y = Z (To2-Y) (37)
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where:

V
KWCp

(h1 + h2)L

Z = eNTU 1 + NTU2

Multiplying both sides of Equation 37 by WCp and rearranging yields:

YWCp (Z-l) = WCp (ZTo2 -Tol ) (38)

Adding and subtracting WCp To2 to the right-side of Equation 38 and rearranging
yields:

WCp (To2 - Tol ) = WCp (Z-l) (Y-To2) (39)

The left side of equation 39 is recognizable as the rate of change of fluid

enthalpy. To facilitate the identification of the right side of Equation 39, the

parameter Y is written in terms of its constituents. Equation 39 becomes

WCp(To2-Tol ) = WCp(Z-1)(hlT_l hl+ +h_TS2h2 + P _ To 2)

or,

WC - = WCp (Z-1)P + WCp(Z-1) ( hl (Tsl_To2) +p (To2 Tol) hl+h 2 hl-_ 2

h2 (Ts2_To2))
hl+h 2

(40)

Multiplying the numerator and denominator of the right side of Equation 40 by

the surface area, Lw, and substituting Equation 35 into the result yields

WCp(To2-Tol)
= (Z-l) [Q(Z-1) + hl A(Tsl - To2) +

NTU1 + NTU 2 NTU 1 + NTU 2 \

h2A(Ts2 - To2)) (41)
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where:

Q- = PLw = Total power generation in the fluid (Btu/hr)

A = Lw = Area of either surface (ft 2)

Finally, Equation 41 may be written as

WCp(To2 - Tol ) Z-i -NTUI-NTU21Q+Q\.
/

+ (Z-1)A (hl(Tsl-To2)
NTU 1 + NTU 2

+ h2(Ts2-To2_ (42)

The sum of the second and third terms on the right side of Equation 42 is seen

to be the effective convective heat transfer between the surfaces and the fluid.

The sum of the first and second terms is the effective power generated within

the fluid. The electrical analogue sketch shown in Figure 145 demonstrates

the internal connections made in the T(_SS program. The conductance connec-

tion between fluid nodes is WCp. The conductance connection between the sur-
face and fluid nodes is HEA. An amount of power equal to 1/2 (QE-Q) is re-

moved from each surface via a dummy boundary node. An amount of power equal

to QE is added to the downstream fluid node via another dummy boundary node.

Note that the net influx of power to the system is equal to Q.

The power generated within the fluid is calculated from

2 2 2

Q = 4 7r _ AN r (43)
g Js
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TO1

QE1 -Q

TS1 _ _ 2

WCp _ _7 T02

QE -Q
2

hl (Z-])

HE1 - NTUI+ NTU 2

h 2 (Z-l)

HE2 = NTU1 + NTU 2

QE = Q (Z-l)

NTU 1 -F NTU 2

Figure 145 Electrical Analog of Heat-Transfer Analysis
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where,

Q =

# =

g =

A =

N =

J =

r =

s =

Heat generated (Btu/hr)

Viscosity of the fluid (lb mass/ft-sec)

Gravitational constant

Area of rubbing surface (ft 2)

Rotational speed of seal plate relative to seal (rpm)

Mechanical equivalent of heat (778 ft-lb/Btu)

Mean radius of revolution (ft)

Separation distance (thickness of fluid) between seal and seal plate (ft)

Equation 43 includes only the tangential component of velocity when calculating

fluid shear.

The heat-transfer surface coefficients were determined from forced convection

considerations. The Reynolds modulus of the fluid is:

DW
Re -

#A flow

where:

Allow = Flow area (ft 2)

The characteristic flow dimension used is the hydraulic diameter, D. At any

radius, r:

D = 4Aflow = 4 (2 7rrs) = 2s
Pw 2 (2 _ r)

where:

Pw = Wetted perimeter of the flow passage (ft)
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Consequently, at any radius

Re - W

rr#
(44)

Finally, h I and h 2 are determined from the appropriate Nusselt modulus:

hD 2hs
Nu ....

K K (45)

where:

K = Thermal conductivity of the air (Btu/hr-ft-°F)

The relationship between Equations 44 and 45 depends, of course, on whether

the flow is laminar, transitional, or turbulent.

A typical example is discussed in this paragraph. Assume that the air is at

1200 degrees Fahrenheit, K = 0. 0402 Btu/hr-ft-°F, average film thickness is

0. 5 rail, and width of the seal face is 0.4 inch. Then, for a typical value of

Reynolds number of 600., calculated from Equation 44 and a typical ratio of

flow length of hydraulic diameter of 400, flow of air at the interface is laminar

and in a "very long tube" condition. The appropriate asymptotic Nusselt modulus

of 8 may therefore be used at the interface in Equation 45. A typical resulting

value of h is 4000 Btu/hour-ft2F ° at the interface from Equation 45. The

plausibility of this very high coefficient may be rationalized by calculation of a

"pure conduction" coefficient. Namely, h (conduction) = K/(s/2) = 2000
Btu/hour-ft2F °.
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To: National Aeronautics and Space Administration

Lewis Research Center

Airbreathing Engine Division

21000 Brookpark Road

Cleveland, Ohio 4413

Attention: John H. DeFord

Subject: Errors in Phase I Final Report on Development of

Main-Shaft Seals for Advanced Air Breathing Pro-

pulsion Systems, PWA-3161

Reference: Contract NAS3-7609

1° Since the publication of the subject report, several errors have been
discovered. The errors and their corrections are listed below.

1

.

1

.

1

Cover:

• As reads: "...R.H. McKibbin .... "

• Should read: "...A.H. McKibbin,...

Page ii, line 14:

• As reads: "... and H. L. Northurp .... "

• Should read: "...and H. L. Northup .... "

Page iii, line 13:
• As reads: "3. Post inface deformation test analyses..."

• Should read: "3. Posttest interface deformation analyses..."

Page iii, line 27:
• As reads: ".

• Should read:

..up to 550 OSP at..."

"... up to 550°F at..."

Page iii, line 30:
• As reads: "...film at 100 SP and..."

• Should read: "...film at 100°F and..."

EAST HARTFORD, CONNECTICUT 06100
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/ 7. Page iii, line 31:

.

/.

_/ 10.

/
-_/ 11.

• As reads: "365 SP and..."

• Should read: ',365°F and...

Page iv, line 1:

• As reads: "... created a severly divergent... "

• Should read: ". created a severely divergent• e. • • e

Page 5, line 18:

• As reads: "...with Linde LCIC coating (chrome corbide). Twenty-four..."

• Should read: "...with Linde LA2 coating (aluminum oxide). Twenty-four..."

Page 11, 5th line from bottom:

• As reads: "...land or se_._aa"dam" .... "

• Should read: "...land or seal "dam" ....

Page 52, 2nd line from bottom:

• As reads: "... high temperatare, and..."

• Should read: "...high temperature, and..."

Page 94, 2nd line from bottom:

• As reads: "...lip was severly scored..."

• Should read: "...lip was severely scored..."

Page 100, 5th line from bottom:

• As reads: "...and b + aRc/Ho"

• Should read: "...and b = aRc/Ho',

14. Page 200, Equation 34:

• As reads: _W02-.. " ]
LT01 -.

+
• .e

• Should read:

LT02-.

UNITED AIRCRAFT CORPORATION

Pratt & Whitney Aircraft Division

A. _ _,Parks

Project Manager


